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■ Bach class of mathematical problems requires an 
enumeration jof the means-that are accessible for their 
solution* Thus i; in the solution ?of set-theoretical 
"prlSblem^TfKe eluaioe - principle is ad^itlieör/1/. ^Hbirfever, 

the oEo$!©«  principle is good and convenient for those 
problems, where an analysis of set-theoretical concepts 
is necessary» At -the same time, the choice principle is 
absolutely inapplicable to:;the solution of problems in . . 
which it is not only necessary to prove the existence of 
a certain object, but to c>rry out its actual .construction. 
it is assumed here-that, being capable «f performing 
potentially any finite-number of effective elementary acts, 
we obtain the sought object after a finite number of steps o 
Means of this kind are afforded by modem mathematical 
logic in the form;"-rfor example* ;of the apparatus of normal 
algorithms /2/» One class of problems« for the solution 
of which this apparatus is essential, is the class; of 
problems concerning the consistency 73/ of certain assump- 
tions« Sometimes one admits as elementary acts those 
which, - unlike the choice principle canbe performed in 
practice, but which cannot be: called effective $:- since, 
nothing definite can be said concerning the object obtained. 
We have in mind here acts With the element of chance 
(tossing a coin, registering ah elementary particle in a 
counter; etcV). Algorithms-with chance elementary acts 
are successfully used in the solution of several computa- 
tional problems, for example, in solving differential , 
equations (the Monte Carlo, method /«•/). At the present 
time there are in cybernetics an extensive group o* 
problems, where the existence of various objects or facts 
*s established trivially and^within the framework of the 
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eiässrtfäi de-fmiti-öR-öf thfe- algorithm, qurre' effectively, 

although the performance of the solution sometimes becomes 
impossible in practice, owing to its cumbersomeness. Such, 
for example, are problems connected with the coding of 
information, problems connected with the analysis and 
synthesis of networks /5/ etc« Here naturally, the Ques- 
tion arises of ,the necessity for refining the- classical 
definition of the algorithm. One'must expect here this 
refinement will take into account to an even greater 
extendthe singularities of,.the particular class of prob- 
lem. The latter, possibly, leads t© ah expansion of the 
concept of algorithm in such~a^way, that individual types 
of algorithms can no longer be compared as.regards their 
strengtho It is premature at present to"make any general 
forecasts of how the concept of algorithm will be refined, 
since we have far too little information on the specific 
nature of the individual classes of problems. In the 
present work we make an attempt to clarify the algorithmic 
difficulties.- that arise in solving cybernetics problems, 
which are not of trivial solutionsron the -basis of the ■■ 
classical definition of the algorithm, but this solution 
is not realizable in practice because of its cumbersome- 
ness. 

By way of a model object we use contact networks, 
which realize functions of algebraic logic. We pose for 
this object the question of the construction of a network, 
that realizes the function f (x-,, x2, •••, xß) and which 
has a mihumum number of contacts (minimal neTwork), which 
we shall denote by L(f). It is known that there exists a 
trivial algorithm for the .construction of minimum/contact 
networks. This algorithm consists of the following. 
Assume that it is necessary to *jonstruct""a minimal contact 
network for the function f(x-i> Xo> >.«, xn) of algebraic 
logic; Let us consider the Sequence of sets 

where Q^  consists of all the two-pole nets with i-links«> 
Each such set has a finite number gj of elements, and /6, 

We shall sort out in some sequence the nets, first from the 
set GQ, then from G-,, etc. In each net from %...(! = 0, 1, < 
we shall place in all possible manner on- the links the 
symbols from .the -alphabet XT_ .♦♦, xn, TT_, .,,-, x„o 
Obviously we shall havev.(2n.71 methods of placing The 
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symbols.    For each individual placement we obtain a two- 

-pole contact network #L.    Let tjL (x^, x2,   •••» *n^ be a 

function;of algebraic logic  (i.e.,  a function of class ?2 

/8/>, which describes the admittance of the network *£, 

calculated either experimentally'■ or ■ algorithmically... /5/# 

In the case-when ■"'. 

then the network ogives us the necessary network, which 

realizes the  function f(x1? x2,  ••M'*n?*    s_ince ii; is 

known that for each ^function fCx.,, x25 . ...* xn). from P2 

it is": possible; to construct a. network that realizes it, 

with hot more than L(n) contacts, where    .     '.'..-■. 
L(n) =        max        L(f) 

(the maximum is-taken over all the functions;, of algebraic 

logic, which depend on n variables), our process must lead 

to such a network. Furthermore^ the first network *''^, 

constructed by this algorithm and realizing the function 

f(x,:j:*2, ..., x ) will indeed be the network with 

minimum number 'of contacts. - Thus, the algorithm given 

here for the synthesis of.networks is based on the sorting 

out of all the networks. Let us estimate the volume of 

the sorting necessary to construct, with the aid of this 

algorithm a minimum network-that realizes the function 

f(x,, x9* ..., x ). This volume", is characterized by-the 

number of the reviewed network and has an order of 



magnitude 

(Ärww 

If it is considered /9/, that L(n) *^  2 /n, one can already 
visualize the speed with which the volume of sorting in- 
creases. It is seen therefore that this algorithm has low 
efficiency«, The large volume of sorting makes it difficult 
to make practical use of this .algorithm* Thus, in ref*/10/, 
Hisonnet and Grea, by sorting out ail the nets with links 
up to 6 inclusive, obtained all the minimal networks that 
contain not more than 6 contact, for functions which depend 
on four variableso However, to make the next step, i.e., 
to scan nets with 7 links,    is practically impossible. 
Shannon proposed in /ll/ a scheme of a machine for the 
synthesis of networks, which realize functions of four 
variableso This machine makes it possible to find, for 
the majority of functions, minimal networks, but for this 
it is necessary tc perform switchings. Consequently, to 
find the solution it is necessary to sort out a certain 
number of commutations, corresponding to-the networks. 
Therefore the efficiency of the solution is determined by 
the searching time of■the required commutation. This 
time becomes large (practically infinite even if the 
Search is automatized        electronically), if an at- 
tempt is made tc construct minimal network with the aid 
of analogous machines for functions depending on 6 or 
7 variables. 

Thus, the practical use of the trivial algorithm is 
possible only for the first several values of n. Further- 
more, the use of machine technology yields no practical 
advantages over human capabilities. There are grounds for 
assuming that for any method of constructing a minimal 
network for an arbitrary function from P2, it is necessary 
to have some sort of a form of a sorting out of approxima- 
tely the same order as the trivial algorithm. We arrive 
at the necessity of modifying the statement of the problem. 
Two volumes are possible here. 

1. Network Not Minimale .In this case it is 

necessary for any function f(x1? x2» •••> *n) from P2 tc 

construct a network with a"number of contacts equal to 

L(f), but having an order not higher than L(n). The 
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problem was first formulated in this form by..Shannon./12/ 

and was finally solved by Lupanov /9/. The latter has 

shown that for any function f(*n> X2J *'**' rn^ it iS 

possible to construct effectively (with a sorting that is 

considerably smaller than the :sorting of all the networks), 

the number of contacts of which hasran order srf not less 

than 2n/n. It follows from the results of/9, 12/ that 

almost all the functions of n variables require asymptot- 

ically 2n/n contacts. Consequently, neglecting the large 

number of functions, it is possible to construct for any 

of the functions:from Pp almost minimal networks 0 It is 

found here that by avoiding the sorting*, it is possible to 

construct compact networks for a majority of functions, 

but these networks are in themselves complicated, so that 

the number of contacts grows as 2*/n. On the other hand, 

using the Lupanov.algorithm.(without enrolling additional 

information) we are not certain that we obtain compact 

networks (close to minimal) also for these functions, 

which admit of a realization of a circuit with a number 

of contacts having an order lower than 2n/n. This 

algorithm is more likely to yield for these functions, as 

a rule, a poor result. Thus, the following situation 

arises; the algorithm yields compact networks for functions, 

the minimal networks of which contain approximately 2 /n 

contacts, i.e., for functions which are of little practical 



interest, and gives networks of unknown degree, of compact- ! 

ness for functions which are of practical value, 

2. Failure to consider all.the functions of algebraic 
logic. In this case one narrows down in a sensible manner 
the number of functions under consideration to a certain 
class Q C P2, It Is then possible to expect that the 
construction of minimal networks, which realize all the 
functions of n variables from the class Q/rwith the aid ox 

. trivial algorithm rwill require? substantially .less- 
sorting of the networks, than tne construction of minimal 
networks for all the functions of algebraic logic, which 
depend oh n variables. It will be exactly so if (see 
estimate of the volume of sorting on p. ?o /of source/) 

In this case the effectiveness, of the trivial algorithm" 
(i.e., the relative.applicability, determined*Y t he maximum 
value of the number n, at which it is still PossiMeito 
practice to construct ^minimal aelworks for all functions 
from Q of n variables) increases considerably. ™J|y ™ 
increase in the effectiveness of the triviaj. algorithm ij 
connected with the fact that the functions ^variables 
from the class Q admit of a substantially »toPj»-a;tW05*fl 
realization, than arbitrary functions of n vax-ialaXes. «on- 
sequently, feie question arises of separating out the «simple 
classes Q! i.e., such classes, for which I^Cn)«. MnJ. 
Nattily' to avoid a vicious'circle, it «^f^sary that 
all the classes be defined not in terms of the ^properties 
of the network, but in terms of Properties of the functions. 
The construction of such classes and the clarification or 
the possibility of the network realization of the 
fmctLns from these classes has been the subject of many 
investigations: the realization of lteear functions /13/, 
the realization of symmetrical functions /12, W.  the 
synthesis of nonrepetitlve networks /15/, the realization 
of functions that have a value of one on a small set or 
J^M*,.  /1V, etc. Inasmuch as the determination of 
tte^slmTle« class requires in the final analysis that 
Wn}«. L(n), i.e., it is based on a comparison of 
cir?ain fuSc?ions wife other functions of «J^^g. 
of variables, having the »ost explicated minimal network, 
the question'reduces to the construction(for each n) of 
a function that depends on n variables and that has the 
most complex network realization (i.e., to the calculation 

.^••J. >y>*- 
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of the value of L(n)). The problem is formulated more 
accurately as follows. 

It is desired to construct for each n such a function 

f(xlS x2, ..., xn) £ P25 that L(f) s L(n). 

In solving this problem we encounter a principal 

difficulty. Namely, since we do not know beforehand the 

value of L(n), it becomes necessary to construct for each 

function t(xv  x2, ..., xn) a minimal network and to cal- 

culate L(f). After the values of L(f) are found for all 

the functions that depend on n variables, we can readily 

obtain also one for which L(f) has a maximum, i .e., has 

a value L(n). Thus, to find the unknown function it is 

necessary to carry out a sorting out of all the functions 

that depend on n variables. Naturally, such an argument, 

although it does bring to mind the idea that the sorting 

out of all the functions remains unavoidable in the 

solution of this problem, it cannot serve as proof of 

'this fact. 

It is quite natural for the solution of the problem 

to depend on the choice of the means. 

In the present paper we analyze solutions of this 

problem^- in a class of algorithms,, which admit random 

elements as elementary acts, • ^-*^t in a certain class 

of ordinary algorithms. It is. shown in Sec 1 that in  '«- 

class of algorithms with random elementary acts, the 
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problem, which represents a certain, weakening of .the'ä is- 

cussed, problem, admits with probability of unity a positive 

and very simple .solution.. On the, other hand, as is 

established in Sec, hr  in the natural subclass of ordinary 

algorithms, i.e., in the class pf the so. called regular 

algorithms, the construction öf. the sequence \ fn I of the 

functions; fCx-p x2, ...., xfl) for each L(fn) s L(n), leads 

to the construction.of all .the functions of algebraic 

logic, i0e., to a complete sorting out. Then we give a 

comparison of these two approaches to the solution of the 

problem.- In Sec 2 we construct a family of the so called, 

invariant classes and study, their properties. In Sec 3 

we clarify the possibilities of the network realization 

of functions from the invariant classes. In particular 

it is found that all the invariant classes Q^ where 6* 

is a parameter which can be determined in some manner 

(0 ,< <S <z      1) have a simple asymptotic expression for 

LQ (n), namely 

» 
Consequently, it becomes necessary to construct for a 
continual set of classes a synthesis -method which gives 
an asymptotic value for Lo(n}.. We.see therefore that 
the results of Sees. 2 ahd^3, are in addition to serving 
auxiliary purposes, are of independent interest. 

Finally, we point out that: this problem arose in 
195if—1955„ The very.idea of the proof came to mind at 
the same time. However,' the la'ck; of an asymptotic 
expression for L(n) made it impossible to realize this 
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Idea. It was therefore necessary to publish in 1956 /V+. 
18/ a few extraneous results. The final solution occurred 
soon after Lunanov /9/ obtained an asymptotic expression 
for L(n)a 

1. SOLUTION OF THE- PROBLEM OF THE CLASS OF ALGQRITHS WITH 
■ lttM>'ÖM B'LEMENTÄÄY-ACTS 

The" statist leal approach, which we are about to 
discuss, uses certain peculiarities of the network reali- 
zation of functions of algebraic logic, which we mentioned 
briefly in the introduction. We deal, primarily, with the 
asymptotic behavior of the ^quantity-L{n),- namely with the 
fact that   .....' 

'        n 

Secondly, we have in mind the result obtained by Shannon 
/12/. that for any £. >- 0 the fraction of all the func- 
tions f of algebraic logic, which depend on n variables 
and for which   •  *•':■..■•.••• 

^(/}«(i-t)£ 

relative to the total'-number of functions of algebraic 
logic that depend on the same n variables, tends to zero 
with increasing n. However", as shown by Lupanov /?/, a 
stronger result is indeed obtained. Namely: for any 

€. ;^0 the fraction of all the- functions f of algebraic 
logic which depend on n variables and for which 

with respect to the total number of functions of algebraic 
logic that depend on the same n variables, tends to zero 
with increasing n. 

Definition. Let g be an arbitrary fixed positive 

number. A function f(x , x_, ..., x ) from P is called 

£, -simple if 

L(/)<(l-i»L(/H. 

9 



and   £-complex, if 

From the preceding results it follows, incidentally, that 

for any   £ y   0 the fraction of   £-simple functions from 

P2, dependent on n variables, relative to^the total number 

of functions from Pp, which depend on-the-.same n variables, 

tends to zero with increasing n> 

Let us now formulate our problem in the following 

manner:   we wish to construct a set M   of the functions of 

algebraic logic in the form 
*#•«{/,<*,), /,<*„ zj, .... /*,{»„• *^=|i•. **>• • *•■ h 

for which there exists a sequence \\X   sucn that 

Obviously, this problem represents a certain weakening of 

the problem stated in theintroduction«". In fact, if we are 

able to construct for each number n a-tunction ^toc^i. *2* 

..«, x ) such that 
n 

£</.)-£(»). 

then the set .-.-... 

is characterized by the fact that' 

for any n. Consequently, we obtain a solution of the 

problem just stated. 

10 



Let us consider an algorithm, which constructs a 

certain set of functions 

in the form of a sequence, i«e.j thatAthe n-th step 

the algorithm constructs the function f(x-, x2, •••» *n^
# 

The function is constructed by the writing out its 

tables in the following manner: on the left part of the 

table one places the column, in which the" sets of values of 

the variables x., x_, ..., x (a total of 2n) are placed 
■id. n 

one under the other in their natural orMr, and on the 

right part, next to each set, we place successively the 

value 0 or 1, depending oh the result of the tossing of 

the coin, i.e., depending on whether "heads" ::or "tails" 

are obtained«* 

For example: 

«I, .. ••*«-,, «» 

.   0 . 
0. 
0 . 
0 . 

..0    0 

..    0    1 

..     1    0 

..   11 

1 . • •   1   i 

PwMkttT «pocaaan 
A MOMTU ! 

3Kt«ne 

PemtKa iiV 
PwaerKa */" Feme- 
rep6 

PemeTKa 

I 

u 
1 

1) Result of tossing the coin-, 2)  Value of the 

function, 3); Heads, V)*Tails 

The algorithm described admits Of the tossing of 

the coin as one of the elementary acts, in this connec- 

* It is assumed that the probability of obtaining 
heads or tails is the same. 

11 



:•*■$•.: 

tion, repeated applications of the^algorlthmlead, general- 

ly speaking, to different sets. Let us denote by wk~lMj 

the set   of all possible results of the constructions* . 

It is obvious that"$Z had the cardinality of the continuum. 

Let us take an arbitrary number .. £■ > 0. We consider the 

subset W^  from#£, consisting of those and only those 

sets M^, each of which contains the finite number 

.•■£-complex functions«   c 
Theorem 1.1. The probability P(W ) that the 

result of construction will be^'set from }0l   , is equal 

to zero, i*e., ?C$t\t  ) = 0. 
Proof. Since the construction of the function that 

depends on n variables can lead with equal probability to 

each function, the probability of construction of an 

^-complex function is. pn, where pR represents the fraction 

of the ^-complex functions which depend on n variables 

relative to all the functions which depend on the same 

variables, i.e., to 22"\    At the same time, the probabil- 

ity of constructing an ^-simple function, which depends 

on n variables, is equal to 1-.- Pn- We have seen earlier 

that p -^ x(n _^ oO    ). Let us consider the arbitrary 

set M££ TPtt*  . By definition in this set, starting witv 

a certain place (to be, specific, from the n 4-1-th place), 

all the functions are £-simple, and the n-th function 

12 
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is   £ -complex.    If we place under each   £-complex function 

the letter C, and under each £.-simple one the letter S, 

then the set will have the form 

/i» fv   •••♦ /»-i» /»' fn*v fn+>'  ••• 
........ .-; ••• •• C* "'■£/'•'£."?' 

We denote by ^^ the subset of such sets M , that in each 

of these the n-th function is ^-complex, and all the 

succeeding ones ^-simple. Obviously 

is the direct sum of non intersecting subsets. Let us 

calculate the probability P( XfL   ): 

P Wn) « J>» II t* - Pi) « °. .^»"^ ^ -* 1 (i -* «)• 

From this it follows that 

£ 

This proves the theorem completely. 

It follows directly from the theorem that the 

probability of constructing a set of functions, in which 

is contained an infinite number of £-ccmplex functions, 

i.e., the probability of constructing a set from 2Tl\^!~ 

is equal to 1. 

We denote by Wl* the subset from  $t , consisting 

of the sets M° such, that - for any   &y   0 the set M 

contains an infinite number of  ^-complex- functions. 

13 
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Theorem..!,2o The probability P(2öL ) 0f construc- 

ting a set M° from $t   is equal to 1, i.e., ?(7ft*- .) = 1. 

Proof. Let M £&t.    This means that there exists 

an £ such that the set M contains a finite number- of 

(5-complex functions. It is also obvious that for any 

£..' <- £* "^e se*  M contains a finite number of 6'-complex 

functions. By virtue of these circumstances., we have 
80 

«=» 

•where 

•, > «a > • • •  AW  'v* °<* — OK 

On the basis of the preceding theorem P( ffl»    ) r 0 for 

any <fn. Therefore 

This proves the theorem. 

The last theorem shows that we can construct with 
0 

probability 1 a set M , which for any small positive 

number £ , no matter how small, contains an infinite-numbe- 

of 6—complex functions. Consequently, we can construct 

with r>rcbabllity .1, a set M°, for which we have for a 

certain sequence of numbers n.(n,   < n? <  ...) 
JK.  a.       c- 

M«h) 
l(A-»a=). 

We have thus obtained, with the aid of this algorithm 
a solution of the problem, stated at the beginning of this 
section. It must be emphasized in particular that the 
algorithm "constructs" the sought set with probability 1, 
without scanning through all the functions of algebraic 

1^ 
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1WE.Yt,,. .in,constru^tion^an element of chance" is 
usev*,- ^ virtue --0? this,' We arTnot -actually sure that 
anv Individual sample of the set M, constructed by this 
algorithm, will actually contain for «ach ß   an infinite 
number of ^-complex functions. Furthermore, since the 
foregoing algorithm contains chance-events.it is *m- 
possible to provfc  by any means whatever that the set n 
contains for every <£ an infinite number of. ^-complex 
functions. True, there may be encountered such algorithms 
of random acts, for which:the.proof of .this fact is 
possible, but this will be evidence that the random acts 
can be excluded from -the-algorithm» 

2. INVARIANT CLASSES AND THEIR PROPERTIES. 

As already noted above, the class' of all. the func^. 
tions of algebraic logic» which depend on not more than 
n variable^ con tains almost entirely functions Which have 
a "complex" network: realization..- .However, in, practice as 
a rule one does not deal with arbitrary functions and, 

■' furthermore, with the "most complex; ones.  5 *^ +7^« 
the questioA arises of finding the classes ofttggg-g» 
of algebraic logic, which are ^tpt^f^M^W^ 
realization, than in the general case. Examples tfr 
synthesis of networks for individual ^sse^is^ition 
investigated by various authors A2-20/. Tn this section 
we shall construct and investigate a ^f*?^^tSSs 
family of classes, containing apparently all the classes 
that arise in practice, of networks synthesis..- 

Let f(x1, ..v, -*i"ii» *i> *i«l> ••** *n^ ■■—' a 

function of algebraic logic. The variable xt is,called 

nonessential or fictitious if 

A variable which is not fictitious is called essential. 

Definition. The functions f and g. are called equal, 

if after eliminating the fictitious variables these func- 

tions go respectively to functions f and g» s.uch that 

15 



Thus.,, equal functions differ, perhaps, in the presence of 

fictitious variables.• It is most natural to assume that 

if the vfuhctI"on f is specified, then all the functions 

equal to it are also "specified. 

Definition.   -The set Q of functions of algebraic 

logic is 'calledan'invarlaht class if s 

1) For each function fCxj-,^,..., *r}-(. Q,;#»class 

Q   cinCta**all the functions equal to it; 

2) For each .function f(x1? *2>   ..., *n)"£ Q-^class 

Q 6m&fc<*all the functions obtained from f by renaming \ 

(without, identifiöätipn) of the variables;* 

. ..^3) For e~abhl f unction f (x-p x2>  •*'*"»= x ^ ^ Q--2Ö&class 

qAa£Jt< the ;functions obtained from f by any substitution of 

constants in place of variables  (not necessarily 

all -the variables").   ■■ 
Corollary. If an invariant .-class Q contains the 

function f Cx^, *2 j  . * •, *n) .S -const,. then Q contains 

both constants 0 and 1.,  _      •  -.- t   ,;   , ,%. 

.£\*->-ih-^ network considerations. In fact, if a 

' network^ is constructed, realising the function 

f(x19 3r2, ..., xn), one can obtain without difficulty the 

■ . .* From now on we shall understand by "renaming" of 
variables the renaming of variables without identification. 

16 



netvorks^Wrealize  jfunctions derivable from f by employing 

operations 1, 2, and: 3«    At the same time, if.,a certain 

bias? of functions is realized, it is. possible to assume 

that it is, an.:invariant class».. 

", Let -us give examples of ..invariant classes: 

1. The class L of all linear functions,ri.e., the 

functions f Cx., x .,   ..., 3Cß) for which the following 

representation is possible . 
/ (xJt x„  .... xn) s c0 + CJXJ -r <rtx2 +   ...   -I cnxn (mod 2). 

2, The class S of all symmetrical functions, i.e., 

functions S(x , *2, ,.., *n),. the .values of which do not 

change for any rearrangement of the essential variables. 

3«. The class Pv of all the functions of algebraic 

logic, which depend essentially on.not more than N 

variables. ...    ....,,_,. 

h.    The class M of all monotonic functions, i.e., 

functions f(x,, x2, ...-, xß) which can be specified in 

the form of a formula that contains.only the. operations 

<^ and ■ V -. '   , 

£•• The class H of all the functions fCx-,-, x5, •.., 

T ) which are identically eaual to zero«, 
n *       • ■ 

In view of their obvious nature, we shall omit 

the proofs of the invariance of.these classes.., 

We now proceed to clarification of the descriptive 

17 



Structure of invariant classes«, For this purpose we intro- 

duce several concepts. 

Definition. The function g(x.., x, •••",'''r ) is 

called the generating element for the invariant class Q, 

if g 6 Q and either g(x , x2, ..., x .) ■=* const -with 

n-s 0, or for any substitution of the constants we obtain 

the function g1 6 Q« 

Corollary. If g(x1, T2, ••»» XL)-is the generating 

element for the invariant class Q, then all the variables 

x-, , x„, ..., X are essential. 

Two functions g, and g will be called equivalent, 

if they are obtained from each other by renaming of the 

variables. 

Let us construct maximal systems of pairwise non- 

equivalent generating elements"for the invariant classes, 

listed in the foregoing examples: 

1. Glass L. Since from any nonlinear function one 
.i   »...; 

can construct" by means of'operations'1, 2,  and 3 a non- 

linear function of two'variables and any function of 

one variable is linear,  then the generating elements  for 

the class L will be, accurate only to equivalence,  a 

function of  the type 
zy + Ax + By-)- C (rood2). 

There are only six pairwise honeqdivalent functions of this- 

type, namely:'" 
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. $i - *y;, &- *?. ?, - ay; f«-atVyif, ~* Vy; *. - »y y. 

2. -Class. ,S,. -.Since for each ,pf the nonsymmetrical 

functions h(x,. xOJ • ••» XL) there exist two such variables* 

— for the sake ..of definiteness let these be x^ and x9 — 

for"which 

h(xv «,, *„ .... xm)^e/i{i„ xv *,, .... xj, 

then it is possible by substitution of variables to obtain 

from it a nonsymmetrical function, of two_ variables. We 

have at most two nonequivalent generating elements 

3. ''Class_?ir. It is.easy to see that the maximum 

system of pairwise.nonequivalent generating elements for P^ 

consists of functions which depend essentially on N + 1 

variables, and is-there.f,ore finite,     :   .. 

h.   Class M. Since from each nonmonotonic function 

it is.possible, by substitution of the constants, to 

obtain a function x, all the generating elements for class 

M are equivalent, g ■ "xV ■ 

5. Class H0». As follows from the foregoing 

corollary, the class H has a single generating element 

g ==. 1. 

* Since any substitution can be represented' as: a 

product of transpositions;''"' ' 
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Definition. Let g(xlt x„, ..., x ) be an arbitrary ', 

function. Tfce set It _ of all the functions hCy^, y2, • •<>*_ T 

each of which can "be reduced to a function g'(x.» x2> •••> x ) 

by substitution of constants and renaming of the variables, 

is called a pencil, generated by the function g(x^, *2, 

•»•I x /» 

Corollary     1.    If g is the generating element for 
* 

the invariant class Q, then 77V <^ CQ. 

2. If g^ and g2 are equivalent functions, then 

3. If g^ and/g« are nonequivalent generating 

elements for the invariant class Q, then 6^ £* TT1  and 

g £• It*  , and consequently not one of the pencils 

Tl  and"ytZ   contain each other, 
ßl     82 

From this we obtain »directly theorems that explain 

the construction of invariant sets« 

Theorem 2.1» For each invariant class Q the 

following identity holds 

where the spa is taken over the maximum system of pair- 

wise nonequivalent generating elements. 

Proof. Let hCx-p x2, ..., *n) £   Q. Then 

obviously h £ C Q 7T*> . Let now h(xj., Xg» •••» 

x
n) 6 $• **t us prove that h £ ? U TT«'  • 
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If n s 0, then h is a constant ana is therefore the 

generating element gj_ for the class Q. 

If n J^> 1, then in any substitution the constant h 

goes into a function that belongs to Q, or else there 

exlgjss a. substitution of constants, which transforms h 

into a function that does not belong to the class Q ana 

depends on less than n variables. In the former case h is 

equivalent to certain generating element g. for the class 

Q.. In the latter case, after a finite number of steps we 

arrive at a function, that is equivalent to a certain 

generating element gi for the class Q. It is shown thereby 

that there exists a generating element gi for the class Q, 

such that h 6 "HA-  , consequently h £ C y "a- 

This proves the theorem completely. 

This theorem allows us to express the classes L, S, 

F . M, and H. in terms of pencils that correspond to the 
0 

maximal systems constructed above, which are pairwise not 

equivalent to the generating elements. For example, 

It is obvious that, the reverse proposition also holds. 

Theorem 2.2. Let 0 « j g±\   be an arbitrary suoset 

of functions of algebraic logic» Then the class Q : Ct( 
■■-•••' i* 

is invariant and a certain maximal system of pairwise Aon- 

equivalent generating elements for the class Q are confin- 

ed in G. 
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Naturally, this gives further rise to the question 

of the cardinality of the set of all the invariant classes 

of functions of algebraic logic. The answer to this 

question is given by the following theorem. 

Theorem 2.30 The cardinality of the set of the in- 

variant classes of functions that depend on the variables 

^, x2, ..., at , ..., is equal to Ä^^Ut ,±j 

Proof.. In view of the fact that each invariant 

class Q can be specified in the form'C l>c"^a;  , then the 

cardinality of interest to us is not greater than the 

cardinality of the set of sets T g V, i.e., -^  • Let 

us show that the cardinality of the set of ail invariant 

classes is not less than ^ . For this purpose we con- 

struct a continual family of pairwise different invariant 

classes. We put 

It is easy to see that f. f ifj.        when i =jfc 3. Let 

i   = •( i1? i2> ••• [^ ß  s'{\>  ^2» ••• }   tvo 

different subsets of natural numbers. We denote by 

Obviously the classes Q^ and1 Q£ obtained from E^   and E^ 

by their closureSJwith respect to the operations 1, 2, and 

3, enumerated in the definition of invariant classes, are 

different invariant classes. Thus, the cardinality of the 
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set of the,-classes Q      Is equal to the cardinality of the 
• r   > ..=,..' 

subsets« t( j» of the natural numbers, i.e., it is equal to ^. 

This proves the theorem..... 

No» let us  proceed to a study of the metric proper- 

ties~of invariant classes.  . 

We denote by P„(n)  (or respectively by P*(n)) the 
 ■' ■ -Q- • -■■■ v 

number of functions of the invariant class Q, which depend 

on n variables a^, *2, •••,.xQ (which respectively depend 

substantially on n variables x,, x2, ..., xn). For what 

is to come it is useful to bear in mind the trivial rela- 

tion, between PQ (n)" and P* (n):' 

Theorem 2.^. If the invariant class Q does not 

contain all the functions of algebraic logic, i.e., 

Q =£ P2> then   g, (n) 

2Z 0 4*S OB, 

Proof. For Q a A* the statement is trivial, since 

PQto).0. 

Let now Q ^fc A . Since Q ^ P2, there exists 

such a number m, that a certain function gtx^, x2, ..., ^)^ 

Let us take n -s m * k and consider arbitrarily the 

operation** f(xx, ..., V *mtl' •••> *m*k> £■ Q- For 

* Here A is an empty set. 

**Such a functions always exists, since fictitious 
variables are admitted. 
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:•**■■: 

this function we can write out its expansion in the variables 

m*l      m*k ^ v.: y  ^ _ jjjj^- .,.r:«^^t, ..., 3„^ 

(where, as always, x° r x and xX t x). It is obvious that 

^2£^<oC„tl, •", *W' Let f> denote the number 

of functions that depend on the variables x.^, ..., xm and 

which do not belong to the class Q. -By the nature of the 

construction p ^> 0. Hence 

From the latter inequality we; obtain directly the required 

result. 

The theorem just .proved shows that the classes Q, 

which do not contain all the functions of algebraic logic, 

are liquid compared with the class P2 of all functions of 

algebraic logic. ^ _____ ^ 

Theorem 2.5. The sequence of numbers ^/p^Cn) j 

tends, without increasing, to a limit and 1 <_, ^lim^ VPQ(n 

for any non-empty invariant class Q.(i.e„, Q s£ /\ >• 

Proof. Let fCx^ x2, ..., x^) be an arbitrary 

function from the class Q, depending on (n «■ 1) variables» 

Let us examine the expansion 
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/(*,. ••.,*«. *».!)-*•♦,/(*, *i»  1) V Xn.J(X, Xn, 0). 

Since fCx^ ..., xn, 1) and fCx^ ..., x^, 0) belong to 

the class Q, then 

*v><*+i)</>S<ii). 

Hence— 2* 2»*» ■- ' ' 

VP*(n)>VPQ(n + t)>  .. 
"■'■'■■      ^  

It is clear that when Q   *£/[    , then 1    ^   V    ?#Q<m) 
V >21U . 

j". .—. 
Consequently, lim    J  Pn(n) exists 

and is included in the segment  [l, 2j  , q.e.d. 

Corollary.    If the invariant class Q 4s   P2 the 
■ ■ a*    ■ - 

Um VPQW < 2. 

In fact, if Q ^fe P2, there exists a function 

g(xv xt, ...,zJ$Q. 

But then 2*    2* 
lim VP^öÖ < VF^m) < 2. 

4* 
Let us now calculate the values of lim J   PQC») 

for several invariant classes» 
•   . . »*    2*  

1. Class L. />i.(«) = 2"*'*-nmV*?rOÖ-li»V2"*1-1- 

2.- Class S. P|(n) = 2*1*1 - 2 when n > 0 and 

P*(C) = 2. Therefore Pg(n) = 2Q - 2n) 4 2 and 

lim ~V P,(n) = limJ^^C?^!11} ♦ 2* s 1.     - 

3. Class PN.^(»)<^22WVi<limVrP^W<limKC;^-«. 

h.    Class M.    It is easy to show that  (see,  for 

pie, /21/)     F  (V,; < nc* *  <^^" examr__,  . . M 

!■•■'' 

I.. 
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Hence l^VJ^KKmV ^.^-i. 

# 1 < limVP^&)<»**V^5 » *• 

Thus, lim^J"P>0 =1 for all the invariant 

classes Q constructed above. From this, in particular, 

on the basis of theorem (2.2) we have the ■foUcwing theorem. 

Theorem 2.6. The cardinality of the set of invariant 
y>v>        

classes Q, for which lim "JP (n) a 1, is •>. 

In connection with the analysis of the foregoing 

examples, the question arises of whether there «cist In  
ir- '-) general invariant classes Q, for which 1 <    l±^   *v PQ(n 

,/ 2, To answer this question let us consider the 

following example. 

Example. We denote by Q1/2 the class consisting of 

the functions f(x1, *2, ••♦>*n
) such that 

where f (^ ,....;#/>. ;-#*+•»•-** #£r "f
c {W«#»s' f{& • &;»* 

is an arbitrary function of algebraic logic, all the 

essential variables of which are contained among the 

variables, x^ , •••? xj_ • 
It is1obvious that Q1/2 is an invariant class. To 

estimate the number F^-fc) "e turn to the formula 
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f * f'   <fe   f M, from which it is easy to see that' on all 

&»wM£lz:{*,,..., tL\   such that f'CcT) = 0, the function 
*•  ' .    J assemblies 

assumes a value of 0, and on the remaining ee*s we have 

f - f".   Consequently, the function f, for a fixed 

function f, is determined completely by indicating the 

subset of all such *, for which fH«) « 1, and 

f'^oT) s 0.    Let now f* s xx ♦ x2 ♦ ••• * *n <mod 2) or 

f' s yx 4 3C2 4 ..• ♦ xn * 1 (mod 2).    Since both of these 

functions are equal to unity exactly on 211"1 sets, then 
n—1 

we obtain in each case 22   different functions f, with 

0 being the only function which will toe constructed in 

either case. Hence PQl/2(n) ^ 2 y 22n - 1. On the 

other hand, if f■ * x- ♦,... ♦ *u  (mod 2), we obtain 

exactly 221""1 of functions f, with 22 " ^ 22  . If 

it is considered that the number of linear functions that 

depend on n variables, x^ x2, ..., *n is equal to 2
n , 

we obtain PQ1/2<«> < 2**
1 * a2*"1- Thus 

2.2,M-t<\(»)<r».2lM 

Hence »*_ \ 

Let us see now if lim JpT(n7 =2 for Q f A • 

Then 0 4 6" < !• We ask ourselves, can we construct 

for any number G" such that 0 ^$ ^^ 1, an invariant 

class Q such that Um %^T in)    * 2v?    If there is an 
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•affirmative answer to this question,,it is, desirable to 

ascertain the cardinality of the set of all the invariant 

classes corresponding to one and the same value 6 , The 

remaining portion of this section is devoted to the 

solution of these problems. Before we answer these 
_      •• . ■    > ••  > 

questions, we shall construct a special family J Sf'Y 

of/..invariant classes S< /symmetrical functions.- 
■ • ' * .       ■    I* /\ 

Let Step ..., "j , y , ..., y ) be an arbitrary 

symmetrical function and 3^, *2,: .,., x be all its 

essential variables. Let us make up of these functions 

a cortege of n * 1 numbers Y (n) = ( <o> #'i» •••» Y n^ 

where       >6        ' 

T.-I 
5(1, .... I. Ü. .. ,ii, yt>    . ., ?/fc) «o;

; 

I ,  •/ (*'-0. t,  ... n) 
! *•. T 5(i I,Q,...,O,9I. .   ,yk)=\r 

It is easy to see that the cortege V (n) - (V   V , ,. / 

determines fully a-collection of working numbers /19/, and 

at the same time the function itself* s(x., .... r  , y., 1      n  1 
*.., y, ). We shall therefore from now on indicate some- 7 k 
times in the symbol of a symmetrical function in the 

form of an index that cortege,-which defines the given 

function, namely: 
5(*i vyiv.--h^v,...Tn(*i' •■•.**. Vi v*)~ 

* Accurate to the designation of the variables. 
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Let Sg- be a certain...invariant, class of symmetrical func- 

tions S ,,....(*,, • ».-•., *„* y.,,...,.,■ y. ).• We denote by 

P/ r.rfv (n) > the set of all the, corteges, corresponding 

to the functions from the class Sg-• 

We „shall henceforth call such families of corteges 

sets of type .P .... Since the class Si)r is established 

uniquely by means of- the set- f^ ,_,a study of the class S^- 

reduces to.a.study of the.set P^ . It is obvious that 
■■ *   ■■«•«■ 

net. any set, of corteges, can be a .set of type I . In ordei 

to-clarify the■characteristic property of the sets of 

type •-■,,-let us give, the following definition. 

Definition. The cortege y*{m)-*  Cfy , V^,v- V^^ ) 

is-called a~segment,of the cortege yCn) = /M 3^,,,. fa ) 

if 0 4 P 4 P ♦ ffl ^ n« 
. Lemma 2,. 1. In order for a set of corteges J (n) to 

be a set of type P , it is necessary and sufficient that 

it contain together, with any cortege^ Y(n)  any of its 

segments- Yf(m).. 

Proof... In fact., let us consider a symmetrical 

functions  , ,(x., ...,r.  , y,", ..., y.). If the con- y vn; 1      n  x.      &   . 
stants are substituted in this function, it goes into a 

certain symmetrical function  ^ 
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■f** 

where 
{**, *«*>c:{*i zj<? {yi% y^ciiyi y»V 

Let this function be defined "by the cortege ^r(m). Let us 

assume that a given substitution of constants converts p 

essential variables from x., ..., xr into I, then 

Consequently, Y'fo) *s a segment of the cortege yCn). 

The opposite is also true: if the cortege Y'dn) is a 

segment of the cortege ^Cn) and S y,  y  S Y« ( } &TB  &ny 

symmetrical functions defined by these corteges, then the 

function Syt, .is obtained from the function S y^j by 

employing operations 1, 2, and 3 (see definition of the 

invariant class). From this /we readily extract also the 

proof of the lemma. 

Thus, Vg  together with any cortege contains all 

its segmentso 

We shall now study the structure of the corteges 

For this purpose we introduce a series of numerical 

characteristics. Let us assign to each segment Jj»(m) s 

\f Cm), defined by the formula 

and called its characteristic. 
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Obviously, the characteristic ^(m),represents the 

average density of distribution of the numbers. 1 in the 

segment ^(M)*    In particular, PQ(n) is the average 

density of distribution of the numbers 1 in the initial 

cortege ¥(n). let furthermore ; 

^^ 

(here the minimum and the maximum are taken over all the 

segments of m * 1 numbers!;. We then obtain tvo corteges 

}.  = (^,,X%n, ^4., y       and^t« i^,/U%7 *«• .-P-,»+t ) 

such that 

We shall call these corteges respectively the J\ and M- 

corteges. 

Examples: 

*■%-(!. 1,1. V4. •/„•/•); 
^f-#. 0, I, 0, i, 1). TJkm-, A-(0.0, V» »/*» V». %); 

** *»-{!, i, */„ •/«,*/„ %); 
3) T-^»'i, 0, 0, l/l).: 7^t,   ,l-(0, ©/'/*, V«, % »/,) 

$ t-Ä *. o, i, o, i). r^  ■,, *-<o, v„ %. %, »/„ %) 
. ' *">-(*.%• %.%.•/»."/*) 

It is easy to see that >n and u. corteges charac- 

terize the structure of the cortege, i*e#, the distribu- 

tion of the zeros and units.in the cortege. 

let ^ be an arbitrary real number such that 

0 ^ 6 4:    ■*•"■■■■-''** denote by =S£ ■, Ü,. ,.♦   *±z        and 

!.. ' ' 

>■ V 

Li.. 
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P.. §i. ...  £r , „       —  its best approximation with shortage 

and with excess among the fractions näyirig denominators 

respectively 1,2, ..., m, ... 'Then 

0<a-^<-l n 0< %-«<■! (.) 
IÄ   m pit m f 

Let us_ prove one auxiliary proposition^ concerning-the 

best approximations of a given type. 
fi,     a & 

Lemma-2.2; If i-i  Ü , „, 13- .... are:''the best 

approximations with excess for a real number £~, where 

0. ^ dT ^.  1, then. 

i.e., the numerators ft, ,'h/. ,,M p-^,.., do not decrease 

monotonically. 

Proof, From (*) we have 

Hence ^tl 7 f> ffi - 1 or ^B4]f ^ £, ffl. On the other 

hand, it follows from (*) that 

| •»4-1   m |   m "    . , 

Let us  put   ft*    -  z   Q>„ 4'J .    Let us show that   A;   ^   1. \ m*i       \ m ^* 
We distinguish two cases: A . 

1) -ft    cm-.    It. then follows from    \^Il£i ^.1 that 

.JB*/\T  $m ♦ lor   1/ :^.u^ 

■   '   2) ps     <  m.    Let us assume 'V >. 2.    Then 

(since m - p ^>   0, i.e., m - (o  -^ l). 

The last equation contradicts (**). Therefore 
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A,   ^.   .1.    This proves the ..lemma completely. 

.  Corollary..   If    £~<C   l and m0 is  such that t      < nu,- 

then for m    >- m   we have 

?« < »'• 

...~.,Let us. put v r,/0 (n). , It.is obvious that.the 

initial cortege V' (n) .cannot have a uniform average density, 

equal to (■  over all the. segments,, if 0 ■**. <5" 1. In fact, 

for C "^ P       1 one can always,find such m ^ n, .that 

  ,<!<£" *£ >  r-~  , I.e., 
'V« + / ■ ■■'fr, 4- i 

cannot oe representec 

in the form of a fraction with a denominator equal to m + 1. 

value Therefore the average density V (m) r^= ©  for  ' "^ 

of p. Thus, with the exception of two trivial cases, the 

distribution of units in the cortege o(n)  can not be 

ideally uniform.- To be sure, the average density V Am) 

can .approach the number 6 , namely when >L(m) s  v>" "M., P. • "IT  -f- 

or ■ V. (m.) z   EJHi    ...    In this connection, it is natural 
P yn-t\ yr\-t \ 

tc define further the concept of uniform distribution, 

in the following manner. 

Definition. A cortege /(n) with characteristic 

>r(n)  = &■.. is called uniform If 

m-f-l 7 <*»(«)■ 
ftm»i 

for  any m (in z 0, I,   .... n) and. p  (p = 0,  1,   .... n - m), 
ÖK<ii -      phi + J where n^j and are the best approximations 

with numerator a 4 1 of the number  £"" on the low and on 

the high side. 
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It is easy to see that the cortege Ys (0, 1, 0, 1, 

0, 1) is uniform. Consequently, uniform corteges do 

exist. It is seen from this also that the concept of 

uniformity introduced here corresponds/to our intuitive 

concept of uniformity. However, the difinition becomes 

compTetely meaningful if we succeed in showing that uniform 

corteges exists for any characteristic yQ(n). 

Lemma 2.3. For any rational number jE/q, where 

C ^ J?/q ^ 1 (the numbers Jfcand q need not necessarily 

be ju&ä**!^. ^Li^r**),  it is possible to construct a uniform 

cortege y (h) = ( V0, VV   •<••, N/) with the characterise 

V1 Jn)  = i/q. 
0 

Proof.    Let us put n = q -cv^and let __- , ttt 

be the approximations of the number t/q  a**' tA* s&p& **~^U-j 

<best among the fractions with denominators 1, 2,  ..0, n 4 1 

respectively.    Obviously    j2l£L~±~ (since n •» <Mz q).    Let 

us  show that the requirements of the lemm are satisfied 

by the cortege 

where 

From the preceding lemma it follows that   Jr   is equal eithei 

to 0 or to 1. 
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Obviously, for each initial segment (fo, y;19  ♦ ..,ym) 

Let us assume that for a certain m there is asegment 

From this-we "have, taking into consideration that p •£   0 

■>•' 

At the same time, since ■ »■■      is the best 

approximation of the number 1/q on the high side, among the 

fractions with denominators p ♦ m^ ♦ 1 

We have arrived at a contradiction. Therefore always 

Consequently, 

Let us examine the numbers 

U 
We shall show that the fraction Of f/m are the best 

approximations of the number l/q, on the low side, among 

the fractions with denominator equal to m, i.e., we shall 
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show that 

If m = n 4 1, the statement is trivial, since 

■  Let now m <C n ♦ 1. First we shall establish that 

then .♦, 

a A 
More accurately, %- <^ ifj< ^ ^; ^    and 

In order to show that -SU» s.fä». » it remains to 

establish that 

Assume that this is not so. Then 

•»» q      » ' 
i »e •, 

Hence 
(*+i-»)ftul-(»+'i)'p^K<B.+ i|,+ i<0." 

Dividing each term by (n ♦ l)(n* 1 - m), we obtain 

"TFT   «+li—*■»+«-■• ^VyW   f^»+i~» 
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The latter contradicts the fact that _L-2Li±^21is the best 
■•:...        o "n+i-** 

approximation of the number %/q with excess aiaont the 

fractions with denominator n * 1 - m. 

We have thus established that 

-  We shall now show that _-i22 - fLü2 . 

For the end segment of the form ( Y* _ , •••, Y  )> ve ^ave 

Let us now establish that for any m and for any p(0 *C p 

M*»^- 

If this statement is not true, then there exists an m^ an*, 

a certain number P0(P0 <^ n - m ) such that 

Inasmuch as 

Tp, + • • • "T Ypa-*m$ — rpt+m,,*!     rj^ '- (?n*t ~ Pp9?   " uWi """ rpfc+iv+i*' 

— an+i-pB ~ *»-p#-»l,' 

then *n»i-j>,—^n-i>0-ins <«me*i   *' *»  «TW-i-p, <*»-»>,-»«•+ *""«' 

Hence »+»—/»»"^ <»-/>»+«»>+»s,-H    «-H—* 
l 

»+*-/* 
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At the same time, since . ~—£2— is the best 

approximation of the number %/q.  on the low side among 

fractions with, a denominator n * 1 - p-, 

an+i-p0    I   • 1 

»+1 —A ■"* ? ~~»-f 1 ;:>» * 

We have arrived at a contradiction. Therefore 

M"»--3?V • ?«*****■ v.<»> - ~*ri 
# then lor any m 

a in-» 

Consequently, 

iV<vp('»)<-^T('n=s0- *' .... «+1; p=*ii.  1. m-H 
, n — w i 

This proves the lemma completely. 

Note. We have established simultaneously that 

We have thus shown that for any rational number JL/c  it is 

possible to construct a uniform cortege with a character- 

istic £/q. The question of the number of such corteges, 

having a length n a q - 1, we shall leave aside. Let us 

give an example based on the construction of uniform 

corteges. 

Example. It is required to construct a uniform 

cortege for the number 10/13 (n * 12). Let us write out 
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-the best approximations on the high side of the number 
10/13, having the respective denominators 1, 2, ...,13: 

a, l k_2 • fc" 3' h--±  JL-1 .It.I, it-3.,; 

T*T» T5*?' To" "To» it - n • u.     12 *1£ 

The sought cortege has the form     {iliiO iliO iilO). 

Let    o^be an arbitrary real number such that 
es>-"   4%.    1 and * 0 ^C'^T ^ 1 and 

£&.■■,_ — 

its best approximation^ on the low side and on the high 
side, among all the fractions with the denominators equal 
respectively to 1, 2, ..., n, ... Then 

^<< *£: *W Av~«*<* (n«l, 2, ..)• 

The set of all the .uniform corteges with -   > 
characteristics >> Cn) = oW/^

+l)and >Mn) *#,+, A»+/; 
(n » 0, 1, ...) and all the segments of these corteges, 
by virtue of lemma 2.1 is a set of type P . We denote 
it by P<$- , and the corresponding invariant class of 
symmetrical functions will be denoted by B^i 

Lemma 2.h.    If a cortege Y'(m) • (Yp, /+,  «. v Jf^ Jf /^ 
then . '  ' 

Proof. By definition this.cortege is a segment of 
a certain cortege J(n) * f>, /.,..o ffy») £ ' 6 >^fT^  +t,ö p 55. 0 and m. ^ n.. V is the characteristic of the 
cortege Y^  ma satisfies the inequality 

n-t-t 

inasmuch as t 

Let *Cif /(m+0 and jCv^"4' )denote the best approximations 
of the nunn5ers/Wf///-h>/)and^.ff/fy» + /) respectively on 
the low and on the high side'among all the fractions with 
denominator m ♦ 1.    Then      nki 

*ro'+t   -      «it»! t__    . 
m+1       «+1       m+I 
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and 

Consequently 

and 

'"*•»« ^ $»*i 

««■»+» v,±aiL L_ ^.8- —- —>o—   " 

'ÜTTT < MT^T^FT < ° +7H + m+i <a+ ■+.» 

Since by virtue of the uniformity of the cortege \A^ 
•we have .   » 

then ^ «, 

This  proves the lemma completely« 

Lemma 2o5o  P,    =tr Hf   if ^ 4= <5^   •. 

^    Proof.    Let  <" =£ <S^,   .    To be specific, we put 
&/<£ (?„ 6   We choose m0 such that 

Assume that there exists a cortege ^ M=tfp5 YPH ? • ■-; j4-w« ; 
with m > m«, which belong*, simultaneously'to fthe setsf / 

Vf   and fV.   •    Then»  using the preceding lemma, we 
obtain   * •       Ä 

•■-sir <%(«><•■+^+r- 

Since m > m_, these inequalities are incompatible with 
the initial equation. Consequently, the cortege tf ' (m) . 
(m > m0) cannot belong simultaneously to the two sets 

%  and f£ o From this we obtain the required results 
directly, namely \; 

T..+T.    /WIXASU    'i***- 

~ %- 



At tue same time we established the following stronger 
fact* the sets f« and fV.can have as common only a 
finite number of corteges — corteges with length not 
exceeding mQ. 

Corollary. The family}^ has a cardinality 1*. 

As already noted, each set V#   defines simulta- 
neously an invariant class S  of symmeteric.functions, 
'We therefore obtain from the lemma TS"ast  proved the 
following: 

Theorem 2.7. S$* #   ^.J if <^ #<5^ 

Corollary. The family 4  S^J has a cardinality 'h 

Let us prove still another auxiliary statement 
concerning the functions of the classes S^r." Let 
6 < 1. 6n the basis of lemma 2.1+ there exists such a 
number-% = No<*"0, that when m..•> NQ, for any segment 

^T'Cm) £ rV.vV(m) < 1, i»e., the cortege ^»(m) 
cannot consist of unities only. 

Lemma 2.6. Let SCx^ ...» *n» Y^  •••> *%)  te a 

symmetrical function from the class S$- ( f "<.  1),"which 
depends essentially on the variables X^, x2, ..•> xn. 

Then the function S«-obtained from S by substitution of 
constants instead of d essential variables (d ^ n\*Sa 

instead of certain unessential variables, is a symmetric 
cal function, whereas'if n - d ;> ND, this function 
either vanishes identically, or depeiids essentially on 
n - d variables• 

Proof. The symmetry of function of S» is obvious. 
Let n"-d "> N0. IT at least on of the n - d varia-- 
bles xix, xi2, V..y xin-d(l-^ ix £.i2 ^ . •"•■ 

^ in„d ^ n) which remain unreplaced by constants 

is such that the function S» depends on it in a non- 
essential manner, then by virtue of the symmetry it 
depends in a nonessential manner on all the variables 
of this group. Therefore, the only functions which 

' contain only nonessential variables, are constants, 
and in this case-we have either the constant 0 or tne 
constant 1. 

f ■■■.■" 

m? 

•■?_■<(&?%£j 



At the--aame time,, the functions S' correspond to 
the cortege ^f(n-d) of-;the set f^ ;l Since n-d-_S> N_, 
the characteristic y_ (ri-d ) of the cortege V *(n-d)   ü 

satisfies the inequality V (n-d) < 1. -The latter 
P _        ■ 

signifies that S1   ^  1.    Consequently, when n-d  >    NQ, 
either the function Sf depends essentially on the 
.variables x,,   , x,   •   .... x.,        or else is the constant 0. 

— .1      *2 ^-d 
This  proves the lemma, 

_ Let us now construct a family of classes Q<s~"(0 
«C  ■©    ^.    i), starting but with classes^.S^. Let, as 
before„NQ SE N0( <?), where  £   <C 1 denotesjsuch a number, 

that when n>   N   we have 

We denote, furthermore, by p^Q^the invariant class con- 
sisting of all the functions which depend essentially on • 
not more than N0 variables, aftd by Q1 . the class of all 
the functions        . f(x-,>   ..., x_,  z7 ,  ..., zm) of the 
form       ^ 

- *»H* *•..*!.•■,.. **>/(*;, i..• • **ir
j"<• • • - • V- 

■where "S is an arbitrary function from the class .S' , Xn, 
.... x — are all essential variables of the functions' S; 

• V n . •: 
f» — arbitrary functiön"of algebraic logic such that 
its essential variables x^ i"#.., ^ are:contained among 

the variables Xn, ..., x , i.e., 

the set of inessential variables -l  z^, •».., ^jr  of the 

function f is the joining'1 Of the 'sets of inessential 
variables I  y1? ..., yk ) and / u1? ..., u I , i.e. 

Let us put finally    '''■'■■-''• 



Theorem 2.8, The classes Q  are invariant and 

<-■■■■-,   i -"W 

Proof.    Let Us show first that the class Q^' is 
invariant.    The statement is quite obvious if Q^ z *£• 

,Let-now f   £   Q^-and Q/ ^    P2«    '^ cas€S are possible: 

a) f   £.    ^°c    ?hen any function -which is obtained 
from f by applying operations 1, 2, or 3  (see definition 
of invariant class) belongs tn this class by virtue of 
the invariance of- the- class Psi£k' 

b) f   €    Q!/   and f   f    F^0;    In this case 

/(*, **• zr •■■••O- 
« 6- (x V». !t»)& >"(Xi. *^ "r "* 

vith r» "> 1L. ' Let us verify that upon the substitution 
0 

o-f the constants (3rd operation) we obtain a function 
from Q^% In fact, let us insert d constants instead of 
Q essential variables and a certain number of constants 
instead of the nonessential variables. Jhen if n-d ^ NQ, 
jhe function obtained belongs to class F"0, but if 

n-d > N0, then on the basis' of the preceding lemma it 

is either a constant 0 (and therefore again belongs to 

class FN°), or depends essentially on all the remaining 

n-d variables from among the variable's'^, ..., *n, and 

then it has for it the same representation as for the 

initial function, since it belongs to the class Q1^- 

Verification of conditions 1 and 2 (see definition of 

the invariant class) is obvious. We have thus establish- 

ed that the class Q is invariant. 

Let us show now that Q g   JP      §.£'*■ if 

— 1+3 -, 

;  ,- 

-*-> * „^ 

.v 

p*i ■ ̂  
T&FZ^y-J1 > 

<>: Ä !>'<, 
$i\ •i 



** 

6{ 4* ^%  (0 < iff y 6~z^  !)• 2"° *>e specific, we put 

^T ^ ***"• w© consider the sets J7^ and H^ . On the 

basis of lemma 2.k we have the following estimates 
" ■ ■*-W'?!,'tw*ar.'- 

Assume that n is. chosen such that 

When the symmetrical function sytyn^    6    Q^  anä 

S v.»^n) £=      Q/ since in the opposite case 

ST («> (*„ ..., x„ 2„ ..., zm) • 
"^W<*i *W.Jfc. ••-.*)*/'(*.,. ...,arif>iit a,), 

which is impossible, since the average density / (n) of 

the cortege Y V(n) is greater than the average density 

/'(n) of the cortege Vf(n). This proves the theorem 

completely. 

Let 0 4£ ^^ 1 and ^(n) = ( ^Q, J^^, ...,Vn) 

be an arbitrary cortege from '^ • Let us consider the 

sum _, , 
®(T(»))-T/S+TiC«+ ••• + r»C2- 

It is easily seen that this sum characterizes the number 

of aggregates in which the symmetrical function 

— Mt _ 



turns into unity. 

We shall study the asymptotic behavior of the 

quantity v(ö{*))  as n —* «>o .For this purpose we 

<use the local and integral limit theorems of Laplace /22/. 

'Let"us recall the formulation of these theorems. 

Let P (k) s C^pkqn""k, where p ♦ q * 1 and 0 < p, 

q <; 1. Let us make the following transformation on the 

graph of the function Pn(k): 1) we shift the graph to 

the left by an amount np, 2) we contract the x axis by 

>fnpq times, and 3) we stretch the axis y by V npq ' 

times. Obviously, under this transformation a point 

with abscissa-.k will go into a point with abscissa 
L 

x^=~T===&=r>-- . As to the value of the function at 
k   -\[*n f f 
this point, it will be 

" Local Limit OR Theorem. If 0 < p, q < 1, then 

uniformly over x£  , as n -—$► ■«■» . We denote by 

P (a, b) the sumf " 

Integral Limit  , Theorem. If-0. ^ p,<2, < 1, 

a <C b, then äs n 

- V5 ■_ 



We now formulate and prove a lemma that character- 

izes the asymptotic behavior of the quantity v( j(v)/d> 

"~ Lemma,   JMOl-*«<»-*»), if T<»>€r- 

Proof. Let us estimate the quantity 

:...-. t^CD'CI)'-..- 
If--we put p r q = 1/2, we obtain 

■ «. 

2-"6(T(n))«TpPÄ{0)+YtPn(*)+ .'■• • +TAW- S T*P-(*)- 
tea* 

This expression can he considered as an integral sum, 

corresponding to the shaded portion of the step-like 

figure of Fig. 1 (the drawing «as made for n = 8 and 

y' <8) = (110101010)). Let us r number in Fig. 1 the 

rectangles from left to right by numbers from 0 ton, 

The rectangle numbered k (adjacent to the segment 

tk, k 4 ij ) is shaded if and only if /k = !• 
In 

this case the quantity  ; J| 4Pn(k) rePresents the 

area of the shaded figure. For what is to come we have 

to proceed to Fig. 2, which is obtained from Figo 1 by 

the same transformations as mentioned in the formulation 

of the limit theorem. Since here p = q = l/2i the shift 



is made by .an amount np s n/2 and the x axis is compressed 

by y npq s -\fn/2 times; the y axis is stretched by ■\Z*n/2 

times. 

As a result of these transformations, the area of 

the image of the stepped figure (Fig. 2) equals the area 

of the initial stepped figure (Fig. 1)0 On Fig. 2, in 

accordance with the given representation, there arises a 

natural numbering of the rectangles, namely by numbers 

fromC to n from left to right. Assume we have a certain 

segment (piece) of the x axis. We denote by p and p + m 

respectively the numbers of the farthest left and farthest 

right rectangles, the bases of which belong to the 

segment. We Irtonipi fy. the given piece with the segment 

y»(m) = !(^p,Y +|, ,.. /p+n)°f the initial cortege 

Let us now explain the idea used to prove the 

lemma. By virtue of the limit theorems, at sufficiently 

large values of n, the graph shown in Fig. 2 becomes 

close to the graph of the function y s{e* f>«[- ^f^Mltr 

in the area corresponding to the stepped* figure, deter- 

mined by the segment [_a, bj becomes close to 

\ -£ '«J2 However, we are interested not in the 

entire area of the stepped figure, but only in the area 

of its shaded part, determined by the cortege /(n). 

From the fact that in the cortege Y (n) the fraction of 

- itf — 



•öries is close to . O ; ,._.. it does not at all follow that the 

fraction of the area of the crossed hatched part relative 

TO «he area of the entire stepped figure Is..close tc £ . 

hevertbeless. this is .true, and to justify this fact vie 

,145r. .,, -rfrnnertv of corteges fron the. set / /»    Subdividing 

the *•' £^is into sufficiently, small parts, we are justified 

in stating that.at sufficiently large n on each such a 

ulece the fraction of .the area of the «haded part 

relative to the area of the corresponding.stepped figure 

is? close to V-  .  In fact, at sufficiently large n we 

have the following: 1) T,he graph represented in Fig. 2 

Decodes close to the .graph of the function y *p=L ~x-'rx , v 
. NO...- 

and since,the limit function is continuous, then 

on the considered piece, the heights of the rectangles 

change insignificantly if the piece is snail, and there- 

fore the ratio' of the areas of the rectangle? of interest 

to us.is determined by the ratio of the number of shaded 

rectangles to the corresponding, number of shaded and un- 

shaded rectangles, i.e,."in final analysis by the average 

density V/'-(m) of. the segment [■'(&)  of the initial 

cortege V(n.), corresponding to the given piece: 2) the 

number m, by virtue of the contraction of the r.  axis, 

yill.be large and since X'(m) ■£   JV > thGn ^ p("l) 

will be close to ■/. From ..the result obtained for 

.sufficiently small pieces and large n vie can reaany &»am 
«.•■** ,-<<tt.w. 
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also the final result.. 

Let us proceed to carry out the proof itself. 

1.. We take a ^ b such that 

a.     tJ       OB z* 

2. Let M. be such that when n > M^ 

3. Let M9 be such that when n > K2 

if. We take *L such that M- ^ W^* Since the 

characteristic of the cortege y» (m) = (V,, Y+/ ,.... yl+„ J6 

satisfies the relation 

we have when m ^, M.^; 

°—f<V(|»)<«+T- 
5. Let us consiäer the subdivision ^ = -ja = aQ, 

•]_ ? • • • j ar a- = b \   of the segment jja, b_j • Let &  > 0 

be such that at maximum  ai - a^^ I < & 

6. Since the y axis was.contracted by a factor 

v"n72, then for any subdivision ^ of the segment [a, bj 

- ^ _ 



there exists such a number Mt, that when n ^ M^ the 

number of points with abscissas x£* in each segment 

Pa» ,, a. 1 is greater than M_ • 
L i-l» i-i 3     1.    £ 

7. Let M- be such that (r ♦ 1)==. < —&   when 

n >Mj. 

— Let us now specify £j 1 2s* £ > °« We choose 

the numbers a and b in accordance with item 1. We find 

M, and M0, as indicated in items 2—3. We take the 

subdivision A with mar j a±  - ai-X j < S~   where a 

chosen in accordance with £*   We choose M^, M^, and M^ 

in accordance with items *f, 6, and ?• 

We put M s max(M1, M2, M^, \,  M^). Let n > K. 

Consider the expression m. 

Let us break up the sum into two parts 

is 

Hence 

»   2  *M*><   2   *•<*?*-»>•»•; 

From items 1 — 2 we have 

50 



'* tt' 

... r      • 
•it o»      j9 

Consequently 

0<«iififi.-      2 ■ ■      TAW<T; CD 2» 

|>«]^<k<f«*!r. 

Let us transform the sum in the last inequality 

Using item 3 'we obtain 

Inserting this expression into the preceding sum, we get; 

—  51 _ 



or 

oo*- 

r 

<2     2     ifei^i<2    2 

We denote by "x;  and x!"  respectively the largest and 

the smallest values of the quantity I 3J1  | on the sub- 

interval F ai-1? 
&± j  (F*g« 3). 

Taking items h  and 6 into account, we get 

<(•+*)(*—-+£)Vi 
2 

and 

2  '  2  > * .1 
ft* ^2* "*«», S  ?" i/r */^ >  *m        2  T*^=> VV Y2*        Via ~n.      '■ Y^ 

_ >(C-T)(ai~a^-^)W' 
where the i 2/V.n is added because of the interval 

located between a.- and the farthest from among the 

points x>n' to the left, and also between &^  and the 

- 52 — 



farthest from the points x£n) to the right, belonging to 

tai-l> aO  (äee FiS* ^* 

%3 

From this, and also taking items 5  and 7-into 

account, v»e obtain 

*rx 

«'"r+4=('+i>)< 

and 
rf* 

S    2    *£VrH-«(S<*--«>Vsr 

>C-*)'C1-T)>-¥- 
(3. 

Combining  (2),   (3^,  and  (32);:w get 

TkP.(fc)-o 

<*<!+»*? 

- 53 
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From this inequality and from (1) it follows directly 

that when n/* M 

This proves the lemma completely. 

Using approximately similar arguments as in the 

lemma,~^we can readily obtain a generalization of the 

Integral limit theorem. For its formulation it is 

necessary to introduce another designation, namely: let 

Theorem 2.9. If a < b and j/(n) £  ' ^ , 

then as n —> <ä^P 

<C<l.b(l («))      ff  C  "2 j 

—^ *7»)e d2- 
a 

Since this theorem will be-of no use to us 

further, we shall leave its proof aside. 

Theorem 2.10. For any ^(C ^ <^"^ 1) we can 
i . ■     ■ 

construct an invariant set Q such that 

Let us take for Q the class Q^whieh we have 

constructed,  i.e., Q = Q <f'.    If   <üT~= l, the theorem is 

obvious.    If ;-6-<^  1, we have by definition  (see p. 97 

/of source/) 

•and 



Q'*-iS(*i,..... a». »„ .... yp)&f (xj„ ..., xit, «„ .... «,)}, 

with 

5(ctt..:, *„, 3ft,, I^)-5T<»(*I *A- y, yP), 

-where V(k) £ P^- and the essential variable functions 

s and f1 are related by {;i^v.., >^ i CI \ 2p •••>*). J- 

Let 

f(zv ... ,xk, t„ ... ,*,«)■■ 
mS(Xt Xk, 4f|. • • • »»») * /' (*il **»  *i» *' • • "^ 

Obviously, if we put n = m 4 k, then 

P$i*)< A»,(«>< *«£<*)+ ^.(«)-j 

Let. us estimate the numbers P^n^n) and P/jMn). For the 

first of these we found earlier (example 3 of p. 25 /of 

source/) the estimate 

The procedure for. the estimate of p/Xn) is very much the 

same as that for the estimate o*.? #„.   <n> <see example 

on p. 88 /of source/). Vie shall fix the function 

Sir  , ..., xk, y1? ..., y ) and vary the function f», 

observing only one limitation imposed on its essential 

variables 

Considering the function f, where f_= S & ff, as a 

function of the variables x , ..., *k» we see that always 

- 55 — 



? r 0, when S ■■ 0. Consequently, the function -fv is 

determined fully by indicating the subset of all the 

vX r * rl, .  *.'  ., oi^    v   , en vhich S( oi) z  1, 
V*   ' 

ana f -A^u = 0, Since the number of'-    ■ ■"■■- cL  on 

.which S(oC) s 1 is ■ . •■ "• 

where K(k) is the cortege defining the symmetrical 

function S, then the number of subsets of interest to us 
Mf 

?hus, for any function S. which depends 

essentially en. k variables and is determined by a cortege 

Y(k), we have 2      ■  different functions f. From- 

this it follows, in particular, that 

P
Q: (») > 2etTfn». 

Further, the choice of the function Sis determined, firsl 

of, all, oy  the separation of ..the subset of essential 

variables from among the variables x,, ..., x and, 

secondly, by the fixation of a certain symmetrical func- 

tion of the given variables and characterized by a 

cortege from'the set I  /. For k essential variables, 

there are no more than 

such functions. Then the number of functions f, which 

are obtained from the symmetrical functions that de- 

fend essentially on k variables, does not exceed 

r*2fc"max2
s<w» 

t 
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(where the maximum is taken otfer.all the corteges from 

at fixed k). . 

We obtain 
n 

Thus,"'- 

2«r™*P9,tn)<C»!2*",+  VC*2*^max 2^»» 

Let £ > : 0 be' an arbitrary small' number, and then 

according to the preceding lemma there exists such M, 

that" when k >: M and Y(k) £ IV 

2"(«-«)< S(Y(*))< 2"'(•+»)•' 

We have 

'...■■■:• .<«**2***M YC^+^+^Jc^U 
0«te£M »=0 fts« 

«W + 1) nM 2M+> m« 26W,)*2 ..3" • 2 

Thus, 

,<»+«>: i2" 

0«^M 

2<~^ < PQ. (») < Cjf2»"#+(J# + i)«M2M+* max 2««*»+2 • 3n • 2<8+< 

From this it follows that 

0 ik£M 

2», 2*-< lim YPQjn) <2*+". 
n «co 

In view of the arbitrariness of '£ , we finally get 



lim2yPQt(n)^2\ 

This proves the theorem• 

,     Theorem 2,11. For each^(0 ^ <^ ^ i) there 

exists~a .continuum of pairwise different invariant 

classes Q^with lim ^P/«*« .  ' (n) s 2 ;f 

The correctness of this theorem &± 0 follows 

from the proof of theorem 203 and example 6 on p. 87 /of 

source/e 

Let Re. be the subset of all the real numbers from 

the internal (0, 1), whien„äre;:seiiarä*ed from the number 

by a rational distance. VTe can show that the subsets 

R c / and R £//  corresponding to the numbers &    and 5 

are either the same, or else do not intersect. Thus, 

the interval (0, 1) is broken up into a direct sum of 

nonintersecting classes R? of the subsets Re. We 

denote by R the set which has in common with each subset 

R £    exatly one element (different for different classes 

Re* ). R is a set which is not measurable in the sense 

of Lebegue /23/ and has a continual cardinalityc 

The numbers v 6 R will be represented in the 

form of an infinite binary fraction 

in the presence of two possible expansions, we take the 

c<*& 



expansion that contains a tail of units'. 

Let   6~ =£   0, i.e.,  C   < (T  <    1.    he set in 

C* 

>T     v-,; -**.•"^»r:- 7>      V 

J*-: - :-     X_ J.. -   }      * • • ? which  are 

those columns, in which the expansion of the of only 

mv-ih-er   £    cents. •* + 

^     *< 

, f^ §"< W> 
■ •}■•■ p«ri    '-"i J5    eg A- ■»   c-.'-o   ail   -r.f   on   ^yat^cfi^   ^iPtanCS, t'nM.r 

s vr.^f. nexons 5' -'u;^.;.. w e*-o.$& 

differ on an infinite set of coly:~np. ' It fcllovn there- 

r.v tv;o different r. onsets : o(ht     ana
6**» fore that for &ny rao ciirrere-irs «anse^s oc^,  w<u -v. 

^fc'> \"   €    R' ^ere exists a natural nurher'l^, a~ 

lar'f* as desired, which enter« into one subset and dees 

■\zt  erster into another, i.e., 

class Q>^t=ee pale" -.85 /of source/). Let QQ J*' denote 

~he set consisting cf negations of all the functions of 

/■.•n-T.-"! c^v-V'. Odiously Q*>    is an invariant class, 

"~"     (V. V 
'.-J.t. ^:.   1      ,*£ un; = i-^v 

is * 

^ 
is  an  invariant  class \ l»s^ vitn. lim     y     o /v"'i/ ~ 

r»-> ^ 
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r 2  (0 < <5~ < 1).  Q being a sum of invariant 

classes, is an invariant class. 
ok 

Letus :. show that the family of classes Q * , 
<s" 

•where 6- £.R, is continual. For this it is enough to 

establish that Q 9        ^  Q ?   when £' ~ £ ". 

-Since 0"  <. I» it is possible to choose a n.ura'ber 

C5"f such that 

It follows from lemma 2.h  that there'exists such N,( (T7), 

that when n>^>* TT. the characteristic v/(n) of each 

cortege V (n) fröre.  1^- satisfies the inequality 

Cn the other hand, the functions 

which participate in the-construction of the classes 

Q„* , are symmetrical, specified by the corteges y(n)^Zz 

s (10 ... 1 C) with characteristics V (n) = ~—-— . 
♦Vl-I 

Let Np be such that when n ^>   IL we have 

Vie take N s maxCN- , 'SU) •    Then ob;iously we have when 

n >    N ' 

At  the sane time,  since  the subsets   <x        and. oi' , 

are different,  there exists such an i J>  K that 

It  is  obvious that the function f.._, (x^,   ..., x. 5 will 
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be  a function which "belongs only, to one of the classes 

Virtue     4-V.fi-!-     n     * • <V   ■» O/       and Q * 
<j 

v *v 
" i y*i a 1 1 y 

This shows that Q '      ^ 

>'<?. (*K ^ (*) < />«, (n) + P-% («). 

QJ1   si~&K 

2», 
lim   //»-(»)-2*    and   Itm   j/TETTn.) — i 

lim   |//' -,(*)«= 2*. 
ll-MO 

Droves the t-ieorern cor.pistexy 

As noted in the preceding section, it is possible 

tc -assume that in realization problems we always deal 

•with invariant classes.   In this section we shall 

show, making use of the method of 0. E. Lupancv /9/, how 

tc construct networks that realize functions fron 

class .Q<j-. Along with these we find an asymptotic 

i:. A -~!« w ~ o J- O-i. :or the function L      (E).    -he latte: 
'«<r 

addition to being directly of interest,  serves as  a 

basis  for ail the arguments of 3ec. h. 

Let  the function fCx-,, xP,' ..., x^)   •£   Q^ be 

specified by means of a table: 
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••• , J*-,, X/t 

000 ...   «fc«   --    1 

*»: 

00 1 

0 ! 0 ...  «„              ! 
0 
0 
0 

...   0      0 

...    0         1 

...    1        0 

1 
1 

1 
t 

1 

!| 

J ... ' 1         1 1 _J ( 
t 

 L_ : __ 

/(<*. «It) 

in which the values f(^» • ••? c<^, ^k-H* ••*'c^n^ 

for any 0 <: ^, *<2, ..., <^n < 1 consists of the 

intersection of the row corresponding to the set 

( ^, .... o£. ), ana the column corresponding to the 

set («*:-..,, ..-, eC  ). The form of such a table is 

determined by choice of the parameter kc 

vie shall be interested in what follows by certain 

parts cf the table columns, belonging to a certain 

aggregate of rows., i.e, the intersection of columns with 

a given aggregate of rows. It is easy to see that to 

each substitution of the constants oL , ..., ©^ » 
-*-l   "    r 

^ , ..., c^n in the variables x^, ..., x^, xk^1? 

..., xn, where 1 ^ ^ ^ i£ ^ ...  ^ ip ^ 
k» 

corresponds to a certain intersection of the column with 

a system of rows, namely the column determined by the 

^Ä^eL^, , ...,°0 with the system of all the rows 
£tx       n 
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determined by sets for which ac^ s<^ , ..., a^ » °^j_ . 

We shall say of the foregoing intersection of the 

column -with the system of rows that' it is separated by 

a substitution of constants. Obviouslyr  the intersection 

■which is separated by means of a certain substitution of 

constants determines a function which depends on the 

remaining variables and which is obtained, from fCx-^j •••> 

:JO by substitution of the constants **£*   , ..., **-*. ? n I-       r 
&£    ,, .... d<£ instead of the variables x*^y  •.., x. , 
-- k4l'   -- n ^1      ^r 

*k*i» •••■' v '     '     '    r 
Let us consider the set of assemblies *| (eC. ^, • • •, 

c^ )J*; from the geometric point of view it represents 

the set of vertices of a unit k-dimensional tube. The 

subset of all the vertices of the tube, for which 

x. z  t*v J •••» *4 = **^"" is called'an iterval of 

rank r. It is obvious that ahc. interval of rank r is a 

k s r-dimensional i-ribte of the initial cube.* Let us 

prove a lemma on the breakup of a k-dimentional cube 

into a direct I sum of intervals. 

Lemma 3.1. If j^2*1 + P^2 *  ••• * flf^ z  2 ' 

where k ^ r 0> • •• >>* *■• 2*   0, then the unit 

k-dimensional tube can be broken up into a direct sum of 

* By "face" we understant the set of all the 
vertices belonging to the face. 
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s r -dimensional faces,  :w ■--■ _^ ^jp.j-" 

r -dimensional faces, etc., and finally      .'';.■ P 4 . 

i\-dimensional faces, 
1 

Proof. The k-dimensional cube can be broken up by 

dichotomic division into a direct sum of 2n" 1 rn-dimen- 

Tt v- 

sional face's. Since P^1 ^ 2* or. © ^ ^ 2^~r:L, we 

can select from them @ x^-dimensional faces. Each of 

the 2"  ■>- - &   remaining' r--dimensional faces can be 

broken up (by dichotomic division), into a.direct sum of 

k-,-r^ „ ' • 
2 L    *  r?-dimensional faces. Vie obtain a .total .01 

T-, To K 
r^-dimensional faces.    Since p,-2 x * ® 92 *    <± 2    or 

k-r0 T-] -To        • ' 
$>    < 2      ^ -   p 2 ^        we-can select from among 
)2   —. U 

(2*-ri - Pl) 2
rrri ;==> 2*"** - p42

r»-T» . ■: 
To      „- k 

k-r0     rn-ro   •      > 

2K-r2 _ A o1"1"1*2' r„-dimensional faces a total of ß 2 

r2-dimensional faces, etc.«, After selecting ©^^ 

r^ n-dimensional faces (i-th step), we are left with 

vJ    -dimensional'faces. Each of these can be broken up- 

(by dichotomic division).-into 2A"rIi r^-dimensional 

f'aces. We obtain a total of 

r^-di^ensional faces. And this is exactly equal to Pp 

and therefore we can select exactly ß^ rj-dimensicnal 

faces. We have thereby constructed the breakup of the 

cube in the required direct sum. This proves the lemma« 
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Let us assume that Q/f is an arbitrary non-empty 

invariant class,  such that lim   J PA   An) = 2    .    Let 
+*-+*& -<ir 

£ >0 be an arbitrary small number. Then it follows 

from theorem 2'.$ that there exists a number ^(^i;^!'? 

such that when n ^ N 

■where 

vie can.now formulate and prove the lemma that explains 

the construction of a. table for functions from class Q^ 

Lemma 3.2. Let £2 be an arbitrary positive number, 

<5% s 0,(1  ♦ £0). Then, if the numbers s and k 

satisfy the inequality 

£<•«*• i 
the rows'ia the table for the function-fC^, -Tg» ...» *n) 

with parameter k (therefore k <C  *0 can be broken up 

into two groups, in each of which there is contained 

exactly s rows, with the exception perhaps of one, which 

contains s1 rows (0 <s' ^s),'and such that the 

different intersections of columns with rows of each 

group is not more than 2\^y\ 

Proof. Let us consider the expansion of the 

k k 2 numbers s  and s'  = 2    -  (2 /s)s in powers of <0 
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s = 2*' + 2**-f...+2'w; 

\ k      k   t  Q"] 
If 2' Is  is an integer, then p = 2 /s and 2 • p(2 x 4 

4 2q2 4 ... 4 2Qm), if 2k/s is not integral, then 

P r (2k/s) * 1 and 2K = (p - l)(2qi + ... * 2q*) ♦ 

* (2q'l 4■2q,m'). Thus, in both cases 

2*= p,2ri + p,2r*+ •. • +'j?|2P*. t>r, > rt> ... > r,>0. 
with 

{rv.. •, rx}-fa, .. .,gm]Ufa', .... ?«-}• 

Cn the basis of lemma 3.1 the unit k-dimensional cube 

can be broken up into the direct sum of ^ r1-dimensional 

intervals, f 0 r„-dimensional intervals, etc., f £ 

ra-dinensional intervals. This breakup of the cube 

leads to the' corresponding breakdown of the rows of the 

table into smaller groups. It is now easy to construct, 

starting up with the smaller groups and the expansions 

of the numbers s and s', to construct the required 

breakdown of-the rows into p groups. For'this purpose 

each of s rows is formed by joining one small group 

of 2q3- rows, one small group of 2^2 rows, etc., finally, 

0-, 
one small group of 2 "iU rows. Analogously, one con- 

structs a group of s' rows. Let us estimate the 

number of different intersections of the columns with 
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the rows of each group. For this purpose we' shall 

transform somewhat the expressions for the numbers s. 

and s ' 

*«2*, + 2,,+ ... + 2*m = 2,»-f ... + 2*' + 2,,M + ... + 2m - 

#'«2^ + 2'i+...+2,~'»2,l'^-...+2'A+2,,''+,+ .;;42,",'* 

«2'i+..;+2
,,1 + ^. 

■where the number t and t1  are chosen such to estimate 

9t>I>08s(«i««>>|.. ,*W   *i*i<U°«r(aiV>l' 

9,' > [log,(a,v)j,   ä^(   tf>i< H«R«(«,V)I- 

It follows therefore that, s   ^^"i^pS an^  S0 -^ ^"l ^2S* 

In fact, if for example s >  6~_ £0s, then log^s 

^ log0( 67 £.^s). and■■ conseouently /"log.s ~\ ^ 
^12 *-   ä 0 J 

^. fiog0(^ €~s)l . The latter would denote that 

q    ^ fiog^C^T, Cs)1 e "We have arrived at a 
t*l  "^ *»- . 2   1  2 •*■'' 

contradiction and therefore, SQ"^' ^jG- 2
S« ^e  can 

show analogously that s« ^ ^i^2s# EaCh group of 

s rows (or analogously of s1 rows) consists of smaller 

groups, and each of the smaller groups can be separated 

by a substitution of constant's. Within each smaller 

group of 2qi (or respectively 2 i1) rows contains not 

more than P.  (q, ) (or respectively PA (q!t)) different 

columns. Therefore the number of different intersections .. 

with the rows of each group of s rows and s' rows does 
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not exceed respectively 

PQMPQM~PQ.M* [ 
and ■•  t : 

It is obvious that if i and i' are such that 1 ^ i ^ t 

and IT ^ i» ^ t'jthenq^  ^ {j-°e2
( ^1 ^2?)J and 

q J t £  \jLog2 (Ö"x £gs )J . Therefore, by virtue of 

r log2 (Öl t2s )j[ ^ N (see formulation of the lemma) 

we obtain q± ^ N and q£, ^ N • From this ve have 

and thus we obtain 

<.2'.«'*S>_2
V 

This proves the lemma completely. 

•Theorem 3.1. For any <T(0 ^ 6"" < 1) and <£"> 0 

there exists such N, that -when n > N for any function 

f(x , x2, •••».3fn) from Q^ it is possible to construct 

a "contact network "-with a number of contacts not exceeding 
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It 

Proof.    To construct a network that realizes the 

functicr nf(Tl9 3c2,   ..., xn)   £   Q( we use the method 

of of C.~B. Lupanov, /somewhat [refining it/"with the a 

the lemmas ;just proved. Thus, let the function: f be 

specified in the form of a table with parameter .k. Vie 

break up the rows of this, table into p groups as was 

done in lemma 3«2. Each of the groups contains erectly 

s rows, with the exception perhaps of the last one, 

which contains s' (s' ^ s) rows. Farts of the columns 

located between the rows of the i-th group are broken 

up into classes, in each of which are contained only 

those parts of the columns, which are identical to each 

other,' Obviously the number of such classes is equal 

to the number of different- parts of the columns belong- 

ing to the i-th group. Let f..(y_, x?, •••', r.  )  be 

a function coinciding with that given, on the 3-th class 

of the. i-th group and equal to zero on the remaining 

assemblies.' ■ Then 

w i k. ii 

fii(*r*x ~~.~,*J-J&i*„ • ••.*fc>/01 (**«."•••..*jj>r' 
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where 

fin*? ....**)-;v*FT:rij* 

(the disjunction is taken ever-the assemblies (c< , 

..., *>, ), corresponding to non-zero rows of the table 

of functions f ) and r ;(*k+1, .•••» *n> = \/ ^^p 

... y\o/(the disjunction is taken over the assemblies 

(0{       , ..#, «O correspending to the columns of the 
k+1'      n 

j-th class of the i-th group). ' 

we denote by 

/t(x„ ...',.*»)« V/y(*, *»>•; 

We assume ..furthermore that we have a set of vertices of 

a unit r-diraonsional cube, where r.is the power of two. 

Let ( 9  , ...., &   5 be an arbitrary vertex. Then the 

set of all the vertices, determined by the assemblies, 

each of which differs from the assembly (pi? ..., pr; 

by the value of exactly one coordinate, is called a 

sphere. We denote by <f ir-v   •••> *r) the characteristic 

function of the sphere. It is known /9/ that if r is 

a rower of ?., then the r-dimensional cube can be broken 

up into 2r/r non-intersecting spheres. 

The network W* vhich realizes the function 

f(yn, 3TP, ...j T  ) is constructed by connecting in 

parallel the networks vU.\  which realize the functions 

f (T . v , .... T ). Let us describe the structure 
i l5 "2'   ? "n 

cf the network $X. For this, purpose we construct 
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H-»)2" 

Proof, To construct a network that realizes the 

function f(y-, x„, ..., x ) £ -Q-, vie use the method 

of 0.~B. Lupanov, /somewhatTrefining'It/with the aid of 
^—— „i um^HMIlll »l IM) l.„, I  H, J 

the lemmas just proved. Thus, let the function'f be 

specified in the'form of a table with parameter .k. Vie 

break up the-rows of this; table into p groups äs was 

done in lemma 3.2. Each of the groups contain« exactly 

s rows, with the exception perhaps of the last one, 

which contains s' (s' ^ s) rows. Parts of the columns 

located between the rows of the i-th group are broken 

up into classes, in each of which are contained only 

those parts of the columns, which are identical tc pach 

other.' Obviously the number of such classes is equal 

to the number of different- parts of the columns belong- 

ing to the i-th group. Let ^.(r., *2, ..., xß) be 

a function coinciding with that given on the o-th class 

of the i-th group and equal to zero en the remaining 

assemblies.- ■ Then 

/•(*,,*, *n)-.V YM'f** S*>' 

with 
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'■** 

where 
/ftcx,, ....*k>=: v^--:^ 

(the disjunction is taken over the assemblies (ö< , 

..., oC, }, corresponding to non-zero rows- of the table 
k' (?> "       ""     * ^*- --1 

of functions f. .) and fl ;(rv   - . .- ^ = \ • v v*-J> 
13 •K- 

'^wrf*' 

... y\^/(the disjunction is taken over the assemblies 
n^ 

(DC  , ..., «O corresponding to the columns of the 
k+3.       n   ■ 

j-th class of the i-th group). 

We denote by 
/t(*If ...fg*y/y(«, *»)■ I 

We assume ..furthermore that we have a set of vertices of 

a unit r-diniensional cube, where r is the power of two. 

Let ( (2 y  ..., (^ ) . be an arbitrary vertex. Then the 

set of all the vertices, determined by the assemblies, 

each of which .differs from the assembly (px, ..., Pr) 

by the value of exactly one coordinate, is called a 

sphere. VJe denote by <]P(x^   .♦•> *r) the characteristic 

function of the sphere. It is known /9/ that if r is 

a power of 2, then the r-dimensicnal cube can be broken 

ur- into 2r/r non-intersecting . spheres. 

The network ^ which realizes the function 

f(rn, yn,   ..., >" ) is constructed by connecting in 

parallel the networks tfU t  which realize 
; the functions 

f. (T, , x2, ...» y-  )• l-et us describe the structure 

of the network BL/1*.   For this ...purpose we construct 
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a system £l,  qj   of terminal networks M  , M  ,   ..., Kg 

such that each exceeding one is obtained "by adding to 

the preceding one   (Fig. k) anc'M/  - &**.»    M.  is a 

contact tree of the variables x,   ,,'..., x,       is a 
K+l      k+r 

i-1» 2.r_j-terminal net-work (where r is the power of two), 

which realizes all the conjunctions of the form 
"ö£ s> ";*(, 
x^-f^... XU*^ K iS obtained from M. by joining Kti     kSr    2 l 
the outputs, corresponding to the points of the same 

sphere for a certain fixed breakdown of the cube 

l(k*V   —» f5k*r5} intc spheres. H2 is a jTl, 2r/rJ - 

-terminal network, which realizes the functions 

is a multi-terminal network, obtained from M2 by 

connecting ßo each of the outputs)     contact trees 

of the variables xktr+1, . ••7"^ M3 is thus a L1' 2 /rJ 

-terminal network, which realizes functions of the form 

M, is formed from M. by connecting to each output, 

corresponding to a sphere with a center"at the point 

(f L.' —' P £«>» a C1' rJ -Hrrrdnal network of 

the form indicated in Fig. 5. The resultant multi- 
n-k 

-terminal network is a  1, 7? -terminal network, 

which realizes conjunctions of the form x^Jr^ ••• W° 

M- is obtained from Mk by joining certain outputs 

71* 



7*U^Z~~ . V" 

h"f P-^fL -  ^ 
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corresponding to the same sphere, so that the function 

is  realized on the output constructed thereby.    This 

multi-terminal network realizes all the: functions' 

M^ is constructed by connecting.to-the output of the 

multi-terminal network MU, corresponding to the function 
(2) _ jt^-. 

f^j.  ari Equivalent—TT-tietwork corresponding to the 

perfect disjunctive normal form of the function 
(1) " 

f. . Xx-!, ...» r.  ), and by subsequent joining of all the 

outputs into.one. The multi-terminal'network M^ (Fig« 6) 

is a (1, l)-terminal network, which realizes the function 

f.(x.,, ..., x ). We omit the proof of this fact, since 

it makes up the content of reference /9/o 

Let us put r-^«lDfc?,'Jifc" (2 log» 4 0*4. *« [ *=!& ] . 

•We estimate the number of contacts in the network, 

which realises the function f. It is obvious that 

where the symbol L(T) denotes the number of contacts of 

the multi-terminal network T, the factor (2 /s * 1) 

is/the major end of the number of p networks £#«£. We 

have 
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:■*». 

If In'addition the;parameter s satisfies the 

inequality 

then according to lemma 3.2 the number of classes of 

columns of each group does not erceed 2 \2/ and 

,(M6 \ M-) j^ s-k(i
r/p)2\B<. ^hus, when the fore- 

going limitations are .satisfied, we have 

Inasmuch as 

•k  '   " ^» . 

■we obtain 

X    2 
K5+I   ,   2«*»   ,-ii-^ll/^ 0 ili,*r»+» 

C2    +^+T^2-7T-,0«*A) 

üCIIVB 

■where 

^(»X^-fl+M")). 

—   73 — 



Obviously,    ?th)    <£- c/Vn^ and therefore   I"(n> —* 0 

as   tt-* «P*5» «•;. 

Let    £ > 0 be an arbitrary small number»   We 

choose_numbers-§..,   B.^  £--\ such tiia't 

We specify a number N    such that when n >>   Ng we have 

I(»)<»a.
; 

Inasmuch as s s fJ2IlLJZ- J ■•■-' and fc =  [_ 2 lo%rJ » 

there exist« such a.-W-,  that when .n'•-'.->. N^ 

<s<2*. 

If we now take K;s max (^,. Ng,-N ) we have when n > N 

x<>#(n)<Ä(l+?(n))<^(«+«1)(H-2)i
l + ^)<lli#^* 

This proves the theorem completely. From this theorem 

we readily obtain three ether statements: 

Theorem 3.2. For any invariant class Q^, for 

which 0 1, we have 

Proof. To estimate the lower bound of 1^ (n) we 

use a theorem by 0. B. Lupanov from reference /7/, where 

under very weak limitations, which are satisfied under 

our conditions,- -it is proved that for any £. > 0 and 



n s> -K( £). we have 

2  j    .^ 
Since lim M P0 .(n) = 2 , then , 

i©*»^*)  ••   »2» • 

Comparing this, relation „with the estimate given by 

theorem 3*1? w® obtain finally 

1L 

This proves the theorem. 

Thus, ve have separated a continual family of 

classes Qx-.(0 -C ^ ^ 1), for which there exists a 

sufficiently effective synthesis method. This method 

allows us to realize functions from class Q^ by means 

of.contact "networks w**h-eea%ft«%» which contain 

asymptotically riot more than LQ (n) contacts« The 

latter is evidence that in a certain sense the method 

does admit of■ any essential, improvement. This result 

disclosed the asymptotic behavior of the' functions 

.(n) for ..a continuum of classes. 

An essential role is played in the establishment 

of this fact by the possibility of realizing a lower- 

-bound estimate for the function L~(n) for a 

continual family of classes, which makes the use of the 
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Lupanov theorem essential» 

Theorem 3.3. For any invariant class Q-^, for 

•which 6= 0, vs have 

Um  ■   > /■■■•■ 

__Proof.    Using /7, 12/ the louer-bound estimate 

for the.quantity L(n) and the upper-bound' estimate for 

the ouantity Ln    (n), provided by theorem-3»2,  i.e., the 

fact that «hen n  >    N(£ 5 

L(n) >(1 -*)£■ « LQ,(n)<^, 

ve obtain LQ <«) 
Q<;   T   ■  <_—. 

This leads directly to the required result. 

This theorem is contained in /l8/ and shows that 

in the case <^~  0 the function of the class Q^ admits 

of a substantially simpler network realization, than in 

the general casee Theorem 2.6 is evidence that *he a 

situation of this kind exists for a continual family of 

invariant classes. In particular, the invariant classes 

listed in examples 1 - 6 (p. 87 /of source/) admit of 

a simpler network realization. However, the application 

of theorem 33 to the majority of the indicated classes 

is not so interesting, since methods of a simple network 
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fr*' 

realization of the functions of these classes are known 

without thöiü.. Worthy of attention here is only the class 

01 sicnotonic functions, for -which theorem 3.3 establishes 

the existence of a simpler network realization, than in 

the general case. 'The author erpresses his confidence 

that for all invariant classes of practical interest 

•<5"= 0, and consequently, theorem 3.3 is valid. 

Theorems 3.2' and 3.3 can he unified into a K>ore 

general theorem. 

Theorem 3.V. .For each invariant class Q^° ^<? ^J 

the following relation holds 

,. isrW .-■■ 

k.    Solution of the Prob lea in the^^Cl^s^fjogecj. 

Algorithms 

We now turn to the question of constructing the set 

H°, which contains (for any "'£ >" 0) an infinite number 

of ^.-complex functions (see Sec. 1), i.e., such that 

for a certain sequence i^U^ <C n2 <C ••'* ve have 

Trivial arguments, similar to those carried out in 

the introduction, bring to mind the thought that'to 

construct the function fn(*1? *2' '••' *n** W K " ±S 
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necessary to.review (scan) all the functions that depend 

on. n variables. However if no limitations are imposed on 

th,. -.sans for- solving the problem, a simpler algorithm 

can be indicated. 

Let the function F(m) be defined on a natural series 

and let-it assume as values functions from the set K', 

namely »"*.!*'        \ 

wv>ere f f,   M°.' It is obvious that'F(EI) is a recursive 

function. Let us Join it, for example, to the inital 

recursive functions /2h/,    Then we can solve the problem 

stated, by using recursions constructed on the specified 

functions, in a trivial manner and quite sisply* it 

is necessary to take the values of the function F. 

Incidentally, such a layout of the situation is nothing 

but a certain subterfuge, based on the fact that we.-have 

admitted as an elementary means a function which requires 

a scanning of the same order to calculate as values, as 

the solution of the initial problem. 

Thus, if we wish to forbid the use of a trivial 

algorithm (complete scanning), it is necessary to impose 

limitations on the means of solving the problem. These 

limitations are aimed at breaking up the vicious cycle, 

at which one admits as elementary means those means, 

that require the same scanning (and perhaps an even 
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greater one) .as in the case of the trivial algorithm. 

Thus, for convenience Me assume that.we have an 

algorithm A, which converts the natural numbers into 

functions of algebraic logic (say, into a table of 

functions)  f*(xij#)> Xi,e*)> ••• • *tw) >*-->/»(**,<»>}• 

This defines the ' mapping..* F of the set of natural 

numbers on the subset of functions of algebraic logic, 

F(m) =»/(Xf|(w,)t Ti2cm).,.-•• f  *««)-. 

Definition. Ah algorithm A is called correct, if 

the image of the natural series' in the mapping F, 

determined by. the algorithm A, is an invariant class Q 

of functions of algebraic logic. 

That this is a natural definition is dictated -I 

by the fact that usually the algorithm that constructs 

the function fCx-p x2> •••> ^n^ also cons*2^0*53 s- 

1) Any function equal to it, 

2) Any function obtained from f hy 'renaming 

(without identification) of the variables, 

3) Any function obtained from f by any substitution 

of constants in place of (not necessarity all) the 

variables. 

Thus, usually the algorithm constructs a certain 
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invariant class Q (see definition on p. 82 /of source/). 

Theorem *+.l. The closure'M of the set-M with 

respect to the operations 1, 2, and 3, entering into the 

definition of the invariant class, as ?2, i.e.,"It 

contains all the functions of algebraic logic. 

^Proof. LetTP =r Q zL  P . From this, on the 

"basis of. the corollary from theorem 2.5 lim y ?Q(n)    z  2 , 
■to-* 

where 0^<C   !• But then by virtue of the theorem 3«^ 

The latter contradicts the fact that for a certain sequence 

1 hk I (see definitiion of the set M ) 

lim bil&l 

Consequently, the assumption that Q ^ ?2 is incorrect. 

Therefore Q = P2 and this proves the theorem. 

Corollary. If the set M° is such that for any n 
v .    .   . .   # ■ 

it contains "the most complicated" function fn, i.e., 

L(f ) = L(n), then the closure of the set M° with respect 
n 

to the operations 1, 2, and 3 contains all the functions 

of algebraic logic. 

The latter statement v»as predicted by the author 

as a hypothesis in 1953—195^, and served as the 

starting point for the investigations, the culmination 

of which is the present paper. 
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From this theorem -follows directly pur principal 

proposition. 

Theorem k,2.    In.any. correct algorithm, which- 

constructs the set M°, constructs all the functions of 

•algebraic logic,, i.e.., • in other -words, this algorithm is 

the scanning' of all the functions of algebraic logic. 

In particular we also obtain, the following: 
y«flu id f 

Corollary. Any. corroet algorithm, which for any 

natural n constructs the "most complicated" function ffl, 

i.e., L(f ) B L(n), contains a complete scanning of all 

the functions of algebraic logic. 

It is necessary to make a remark concerning the 

result obtained. Theorem does not state at all that in 

order to find- an individual "most comlex" " function 

fn^l' *2V •••' *nJ  it: iS necessaI'y.-t0 -scan a11 the 

functions that depend on n variables. It follows from 

the theorem that to construct the function ffl it is 

necessary to scan all the functions, of algebraic logic 

that depend on m(n) <T n variables and.that 

m(n) —> o*s>.  (n —» GO   ). In other words, a, complete 

scanning is essential in order to construct the entire 

class M . 

'    Let  us now compare the-two approaches to the 

solution of the  problem concerning.the construction of 

. the set M°.    Earlier,  in Sec. 1, we noted that if we 
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admit as possible means algorithms 'with elementary random 

acts, then there exists a simple method of constructing 

the set M° with probability 1. However, in spite of this, 

ye are unable to establish whether the result of such a 

construction does have the required properties or not. 

We have-just shown that in a class of correct algorithms, 

the construction of-the set M° requires a complete 

scanning of the functions of algebraic logic. The latter, 

in view of the impossibility of practical realization of 

a complete scanning (even at values of n that are too 

large) is evidence of the impossibility of solving the 

Problem with admissible means.' Under these conditions, 

it remains for us either to forego entirely problems of 

this kind, designating them as incorrect, "poorly formulated« 

or else to be satisfied with solutions in the class of 

algorithms with elementary random acts. In other words, 

to do what is usually done in practice - neglect events 

of Probability 0, i.e., assume that the given construction 

always gives the set K . 

Thus, we have formulated a problem that pertains 

to network objects in terms that do not contain the. 

probability concept. As to the solution, it has a  . 

probability-theory character. Consequently, in many 

problems the network objects come to the forefront as 

objects with statistical nature. The latter pertains to /" 
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macroobjects, which have sufficient complexity./5/ 

In conclusion we note that the result obtained can •' 

be readily extended to cases of realization of functions 

in the class of compact-valve networks /25/, in the 

class of networks of the type »formulas with memory» 726/ 

(which include electronic networks), etc., i.e., those 

cases when synthesis methods have been constructed, which 

make it possible to establish an. asymptotic value for 

L(n). Apparently this problem lies now not in transferring 

the result to these types of networks, but in establishing 

theorems for classes of networks, in which the elements 

can vary over a wide range. . The result acquires thereby 

a general-cybernetic significance. 

. * 
Appendix. t - 

As shown' by the analysis of Sec. 3, the complexity 

of a contact network^, which realizes the function 

f(x , ..., xn) and obtained by methods of references 

/9, 12, lU-, 27/, depends essentially on now many functions 

can be obtained by sub.stitution^constants from the 

function f(xx, ..., xn). It is possible'that the 

complexity of the minimal network of the fraction 

f(xx, ,..,-xn), i.e., L(f), is determined to a great 

extent by the number S(f), which denotes the number 
* 

of pairwise-unequal functions, obtained from a given 
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function f by substitution of constants. In other 

words, the quantity S(f) represents a measure of 

information on the complexity of the minimal contact 

network, which can be determined from functional 

considerations. In this connection, the quantity S(f) 

is of interest. However, an estimate of the quantity 

S(f)  in general form entails considerable difficulties, 

and we.shall therefore estimate the quantity S(n) where 

S (n) =* max S (f) 

(the maximum is taken over all the functions f which 

depend on n variables). 

theorem. 

3(n)^T. 

Proof. Since the number of possible substitutions 

of constants in "a function of n variables is 3" > then 

obviously S(n) ^ 3n. .Let us show that when n ;> N(£" ) 

we have the inequality S(n) ^> (1 —.£ )3 o 

Fig. 7 shows on the left, and on ..the right, in a 

certain sequence, all the functions f which depend on n 

variables x-,, ..., x (f., ^   f •, if i ^fcr j). We 

join the function f.- from the left column to function 

f4 from the right column by means of a vector-, which 

originates in f,, if there exists at least one sub- 

stitution of constants in the function f^, which converts 

it into, a function equal to f.. We denote by t(fi) and 



h / 

h*.n / 

•A" 

%-7» 

-ftf^- 



V(f ) «» numbers of vectors which-originate in ft and 

enter in f    respectively.   From the construction we have 

 *** *£"" i 

Let tZXx-,  ..., x> depend essentially on the variables 
--3 — . i_ \ 
ac.   ,  ..., xik (for convenience let i^ = 1,  ..., ^ = K;» 

ii, v*!,....., ^--^i, •■••■»■ v- Then each 

function t±ixv  ...* *n) from which we can obtain the 

function f3 ^y substitution of constants, should contain 

when expanded in the variables. x^, ■ .-., *n a term of 

the form        *'; :':::j-}^..z^::..-:'.:.Ji.^  ..... 

Therefore -■—— -, 
^i»?-i?-if*.     \  ■ * 

and 

where 
P*(k)>2*-k2?* 

(see formula on p. 87. /of source/). Let k > log2n, then 

and ,■ „. •. ^  - ■ .  . • 

2cii»(*)pf-fr *-tf 1> 
11*0 
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^xn-£)(5H?))- 
Let  furthermore,  for log9n    > X,  the inequality 

i z'£~l , 1 

j</Z"       <i£/3   he satisfied.    Then 

S'^O-T)28"    2    ^2-*(l + o(1)). 
»=i *>»<*»« 

Finally,- assume, that when log2n > N2 we have- 

ft<toCttt 

Vie  then obtain  for log^n ^>    narCN^ Ng) 

From this it  follows that 

S(n).2* >% S(ft)>(l—)-2* .V, 
we« • 

or 5(«)>{l-«)-3n. 

This proves the theorem. 

Theorem. Let o ^>    0 he a number as small as 

äesired. The fraction of all the functions fAr.^,   ..<>, x^) 

for which S(f.) <C (1 -  )3*\ with respect to the 

nurr.ber of all the functions of n variables, tends to zero 

■with increasing n. 

Proof. The theorem follows.from inequality' (*). 

Let a  ( $\ n) denote the number of all the functions 
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fi^l>   •••>"* ^ of n variables, for which SC^) < 

<   (1 - ?)3n*   We h« lave 

2     s(fi)+    2     5(/4)>(i-.)J,p,.ar. 

From_this It follows that 

or 
(2** - ?<*« *)] 3"4f (*» (1- *)&■ > (i - •) ^V, 

P<«.») ^ « 

This proves the theorem completely. 
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